Towards automated quantum circuit
optimization with graph-based deep
reinforcement learning

Abhishek Abhishek

5th International Workshop on
Quantum Compilation

July 23, 2023

UBC| THE UNIVERSITY OF BRITISH COLUMBIA

QUANTUM SOFTWARE & ==
> ALGORITHMS RESEARCH W Electrical and Computer Engineering

Faculty of Applied Science



Quantum Circuit Optimization with RL
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Quantum Circuit Optimization

optimized equivalent

goal: obtain a more efficient representation and reduce original circuit circuit
e circuit depth
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Reinforcement Learning

Chess, Shogi, and Go [1] Protein Folding [2]
RL goal: autonomously discover strategies for complex e.g. AlphaGo e.g. AlphaFold
decision-making problems
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RL for Quantum Compilation

RL being explored for various quantum compilation tasks such as:
circuit optimization
unitary synthesis

qubit placement and routing State, Reward

St, Tt

Environment

circuit optimization [1] unitary synthesis [2]
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Our Framework: Graph-based RL for QCO

state St DAG representation

reward Tt

° reduction in gate count
° reduction in circuit depth

model-free RL -> we can use any
optimization objective without
major changes to the framework

graph neural network (GNN) agent
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State, Reward
St, Tt

Environment

TRANSFORM MAP = {

0: "do_nothing",

1: cancel _inverses,
2: commute controlled,
3: merge rotations

}




Environment

properties of the environment:

state St : quantum circuit at a given step ¢
fully observable

deterministic transitions s:11 = f(s:,az)

in our current framework ¥4 &

4 ogateset={H, S, CNOT}, T, Rz and Rx -> can be
replaced with any universal gate set

4 one circuit processed at a time

Environment



Circuit DAG representation

State, Reward

U<+ G=(V,E) ¢, T¢
vertices: gate operations V ={H,H,CNOT,RX,...} n o e ﬂ
M
edges: qubit dependencies among the gates A T A )
(Ui,vj) € E = Vj acts on a qubit in sequence after V;

reward Tt as DAG properties

circuit depth = length of the longest path in the DAG

gate count = no. of vertices |V



Graph Neural Network (GNN) RL agent
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Edge representation of circuit transformations
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Applying edge transformations

conflicting transformations
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5 Apply local edge
D optimizations =—— >
./ \. 0: do nothing
. 1: cancel inverses
Topological 2: commute ctrl'd
sorting 3: merge rotations
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key idea: at any step, only consider the
edge to the right of a node
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Work-in-progress software framework < %74 =

W P E N NY |_ A N E quantum circuit libraries,

circuit unitary verification

ngf NetworkX

Network Analysis in Python
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circuit DAG transformation
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Ongoing and Future work

7. Benchmarking on different circuit libraries

o Fault-tolerant: Reversible circuits, Hamiltonian simulation

o Near-term: Variational circuits (e.g. QAOA, VQE)
777,  Open-sourcing the RL4QCO framework

77}, Extending graph-based RL to other compilation tasks such as circuit cutting
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