Towards automated quantum circuit optimization with graph-based deep reinforcement learning

Abhishek Abhishek

5th International Workshop on Quantum Compilation

July 23, 2023

THE UNIVERSITY OF BRITISH COLUMBIA

Electrical and Computer Engineering Faculty of Applied Science

Quantum Circuit Optimization with RL

Quantum Circuit Optimization

goal: obtain a more efficient representation and reduce

- circuit depth
- total no. of gates
- T-gate count (fault tolerant)
- CNOT-gate count (near term)

global optimization of arbitrary quantum circuits is difficult

original circuit

 \mathbb{F}_2

optimized equivalent circuit

peephole optimizations

transform passes, circuit matching etc.

phase polynomials

$$\begin{aligned} |\boldsymbol{x}\rangle &\mapsto e^{2\pi i p(\boldsymbol{x})} |g(\boldsymbol{x})\rangle \\ p(\boldsymbol{x}) &= \sum_{i=1}^{2^n} \theta_i \ f_i(\boldsymbol{x}) \\ q: \mathbb{F}_2^n \to \mathbb{F}_2^n \ |f_i: \mathbb{F}_2^n \to \end{aligned}$$

ZX-calculus

Reinforcement Learning

RL goal: autonomously discover strategies for **complex** decision-making problems

Chess, Shogi, and Go [1] e.g. AlphaGo

Protein Folding [2]

e.g. AlphaFold

RL agents achieve superhuman performance in a lot of these tasks!

Compilation [3]

4

[1] David Silver et al., A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140-1144 (2018).

[2] Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589 (2021).

[3] Cummins, Chris, et al. "Compilergym: Robust, performant compiler optimization environments for ai research." 2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE, 2022.

RL for Quantum Compilation

RL being explored for various quantum compilation tasks such as: circuit optimization unitary synthesis qubit placement and routing

circuit optimization [1]

T. F'osel, M. Y. Niu, F. Marquardt, and L. Li, Quantum circuit optimization with deep reinforcement learning, arXiv preprint arXiv:2103.07585 (2021).
Chen et al., Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning, arXiV: 2204.06904

Our Framework: Graph-based RL for QCO

Environment

properties of the environment:

- from state s_t : quantum circuit at a given step t
- fully observable
- from deterministic transitions $s_{t+1} = f(s_t, a_t)$

in our current framework 🚧 👷,

gate set = {H, S, CNOT}, T, Rz and Rx -> can be

replaced with any universal gate set

one circuit processed at a time

7

Circuit DAG representation

 $U \Longleftrightarrow G = (V, E)$

vertices: gate operations $V = \{H, H, CNOT, RX, ...\}$

edges: qubit dependencies among the gates

 $(v_i,v_j)\in E\Rightarrow v_j$ acts on a qubit in sequence after v_i

reward r_t as DAG properties

- circuit depth = length of the longest path in the DAG
- gate count = no. of vertices |V|

State, Reward s_t, r_t

Graph Neural Network (GNN) RL agent

Edge representation of circuit transformations

Action

Applying edge transformations

conflicting transformations

key idea: at any step, only consider the edge to the right of a node

Ongoing and Future work

Benchmarking on different circuit libraries

- Fault-tolerant: Reversible circuits, Hamiltonian simulation
- Near-term: Variational circuits (e.g. QAOA, VQE)
- **Open-sourcing** the RL4QCO framework
- **Extending** graph-based RL to other compilation tasks such as **circuit cutting**

Collaborators

David Wierichs

Nathan Killoran

Di Matteo

Funding

