Synthesis of a quantum circuit with unique two-qubit layers

Shelly Garion Alexander Ivrii Ali Javadiabhari Gadi Alexandrowicz Lev Bishop

5th International Workshop on Quantum Compilation July 2023

Quantum circuits

https://quantum-computing.ibm.com/

Quantum circuit synthesis challenges

IBM Quantum

≻Quantum gates are noisy

- 2-qubit gates are 10x noisier than 1-qubit gates
- In Falcon R10 most 2-qubit gates approach 99.9% fidelity

https://research.ibm.com/blog/quantum-volume-256

IBM Quantum / © 2023 IBM Corporation

>The quantum device has restricted connectivity

•1 SWAP gate = 3 CNOT gates

https://research.ibm.com/blog/heavy-hex-lattice

Quantum circuit synthesis optimization

- 1. Minimize the number of 2-qubit gates
- 2. Minimize the 2-qubit depth, i.e. the number of 2-qubit gate layers
- 3. Minimize the number of unique 2-qubit gate layers

Example: quantum circuit with 3 CX layers and 2 unique layers

Example Checkerboard state on a line connectivity

The checkerboard state $\frac{1}{\sqrt{2}}|00000\rangle + \frac{1}{\sqrt{2}}|10101\rangle$ with 4 CX layers and 2 unique CX layers

Motivation Advanced mitigation methods

Probabilistic Error Cancellation (PEC) ^[1,2]

Zero Noise Extrapolation (ZNE)^[1,3]

[1] Temme, Bravyi and Gambetta, *PRL*, 2017
[2] van den Berg, Minaev, Kandala, arxiv:2201.09866
[3] Kandala, Temme and Corcoles, *Nature*, 2019

IBM Quantum / © 2023 IBM Corporation

Motivation Advanced mitigation methods

- > PEC and ZNE require learning the noise-model for each unique gate layer
 - Learning the Pauli noise models takes a lot of time for each layer
 - The noise models can drift after some time
 - Simplified control and calibration for these layers

Multiplying CX gates

- A CX gate can be written using 2 CX gates ^[1,2]
- > A CX gate can also be written using 3 CX gates

A 2-qubit identity gate can be written using 2 CX gates or 3 CX gates

- [1] Barenco et al. Phys. Rev. A, 1995 [2] Shende, Bullock, Markov, IEEE Trans. CAD, 2006

IBM Quantum

Permutation circuits

- A Permutation Circuit is a n qubit circuit containing only SWAP gates
- Any permutation circuit can be decomposed into SWAP gates in depth n for a line connectivity using a sorting network ^[1]

[1] Kutin, Moulton, Smithline, *Chicago Journal, 2007* <u>https://qiskit.org/documentation/stubs/qiskit.synthesis.synth_permutation_depth_lnn_kms.html</u> IBM Ouantum / © 2023 IBM Corporation

IBM Quantum

Permutation circuits

- A Permutation Circuit is a n qubit circuit containing only SWAP gates
- Any permutation circuit can be decomposed into CX gates in depth 3n for a line connectivity with 2 unique layers (odd/even layers)

SWAP \rightarrow 3 CX gates ID \rightarrow 3 CX gates

[1] Kutin, Moulton, Smithline, *Chicago Journal, 2007* IBM Quantum / © 2023 IBM Corporation

- A Linear Circuit is a n qubit circuit containing only CNOT gates (and resulting composite gates, such as SWAP)
- > Any linear circuit can be decomposed in depth 5n for a line connectivity ^[1]

[1] Kutin, Moulton, Smithline, *Chicago Journal, 2007* https://qiskit.org/documentation/stubs/qiskit.synthesis.synth_cnot_depth_line_kms.html IBM Quantum / © 2023 IBM Corporation

Linear circuits

- A Linear Circuit is a n qubit circuit containing only CNOT gates (and resulting composite gates, such as SWAP)
- Any linear circuit can be decomposed in depth 5n for a line connectivity with
 2 unique layers

[1] Kutin, Moulton, Smithline, Chicago Journal, 2007

Clifford circuits

IBM Quantum

Quantum error correction codes

Clifford gates are used in stabilizer codes and surface codes

Randomized Benchmarking

Characterize quantum gate error

Quantum advantage with shallow circuits

Constant depth Clifford circuits can solve certain problems that constant depth classical circuits cannot Bravyi, Gosset, Koenig *Science*, 2018

- > The Clifford Circuits are generated by the quantum gates: *H*, *S* and *CX*
- > Decomposing the Clifford circuit into layers ^[1]

H - S - CZ - CX - H - S - CZ - Pauli

- Optimized algorithms for the CZ and CZ CX subcircuits for a line connectivity, the n-qubit Clifford 2-qubit depth is 7n-4
 - Depth of an n-qubit CZ CX circuit is bounded by 5n ^[2]
 - Depth of an n-qubit CZ circuit is bounded by 2n+2^[3]
 - Local optimizations reduce 6 layers ^[2]

https://qiskit.org/documentation/stubs/qiskit .synthesis.synth_clifford_depth_lnn.html IBM Quantum /@ 2023 IBM Corporation Bravyi and Maslov, *IEEE Trans. Info. Theory*, 2021
 Maslov and Yang, arxiv:2210:16195, 2022
 Maslov and Roetteler, *IEEE Trans. Info. Theory*, 2018

- > The **Clifford Circuits** are generated by the quantum gates: *H*, *S* and *CX*
- > Decomposing the Clifford circuit into layers ^[1]

H - S - CZ - CX - H - S - CZ - Pauli

- Optimized algorithms for the CZ and CZ CX subcircuits for a line connectivity, the n-qubit Clifford 2-qubit depth is 7n-2 with 2 unique layers
 - Depth of an n-qubit CZ CX circuit is bounded by 5n with 2 unique layers
 - Depth of an n-qubit CZ circuit is bounded by 2n+2 with 2 unique layers ^[3]
 - Local optimizations reduce 4 layers

Bravyi and Maslov, *IEEE Trans. Info. Theory*, 2021
 Maslov and Yang, arxiv:2210:16195, 2022
 Maslov and Roetteler, *IEEE Trans. Info. Theory*, 2018

CZ circuits

[6,], 3. . [4, , 3], [6, 3], 5][4, , 5][2,[4, 3][7, 7][1, 1][2, 3][4, 5][6, 7][2, 2][2, 5][4, 7][6, 6][1, 3][3, 3][5, 5][2,[4, 6][1. 5 7 Ð Ð Ð Ð [1, 7][4, 4][3, 5][2, 6][4, 4][5, 5][3, 3][3, [1, 6][2, 4]Ð Ð [6, 6][2, 2][5,[3, 6]7[1, 4][7, 7][5, 6]3. [1, 1]Ð Ð 24 Ð [, 6][5, 4][3, [,4] [5, 2][3, [,4] [5, , 2[5]

Maslov and Roetteler, *IEEE Trans. Info. Theory*, 2018 IBM Quantum / © 2023 IBM Corporation https://qiskit.org/documentation/stubs/qiskit.synthesis. synth_cz_depth_line_mr.html

Stabilizer circuits

Decomposing the Clifford circuit into layers ^[1]

Preserves the ground state

Stabilizer circuit

A CZ circuit can be decomposed in depth 2n+2 for a line connectivity with 2 unique layers ^[2]

- Hence, a stabilizer circuit can be decomposed in depth 2n+2 for a line connectivity with 2 unique layers
- [1] Bravyi and Maslov, IEEE Trans. Info. Theory, 2021
 [2] Maslov and Roetteler, IEEE Trans. Info. Theory, 2018

https://qiskit.org/documentation/stubs/qiskit.synthesis. synth_stabilizer_depth_lnn.html

GHZ and checkerboard states on a line connectivity

The n-qubit GHZ state $\frac{1}{\sqrt{2}}|0...0\rangle + \frac{1}{\sqrt{2}}|1...1\rangle$ and checkerboard state $\frac{1}{\sqrt{2}}|0...0\rangle + \frac{1}{\sqrt{2}}|10...101\rangle$ can be written with $\sim n/2$ CX layers and 2 unique CX layers on a line connectivity

Checkerboard state

GHZ state

From a line connectivity to a general graph

- > What is the minimal number of distinct layers?
- > Each unique CX layer corresponds to a color of the corresponding edges
- Vizing Theorem. Every simple undirected graph with degree at most d can be edge colored by at most d+1 colors
- > In some cases, d colors are enough
 - Line \rightarrow 2 colors
 - Hex / Heavy-hex \rightarrow 3 colors
 - Grid / Heavy-grid \rightarrow 4 colors

Edge coloring

Summary

- Motivated by advanced mitigation methods (like PEC and ZNE) we aim to reduce the number of unique CX layers
- Many circuits can be synthesized with 2 unique CX layers on a line connectivity w/o increasing the circuit total depth
 - Permutations and linear circuits
 - Clifford circuits and stabilizer states
 - GHZ and checkerboard states
- > The latter can also be generalized to arbitrary connectivity maps

Thank you !

IBM Quantum

https://quantum-computing.ibm.com

