
Expressing and analyzing 
quantum algorithms with 
Qᴜᴀʟᴛʀᴀɴ
Presented by: Matt Harrigan
IWQC Workshop
May 2023



Why
Google is building error-corrected 
quantum computers

We want to know what we’ll run and 
when. So should you!

Researchers are puzzling through the details:

- [1905.09749] How to factor 2048 bit RSA integers in 8 hours using 20 
million noisy qubits

- [2202.01244] Reliably assessing the electronic structure of cytochrome 
P450 on today's classical computers and tomorrow's quantum computers

- [2302.05531] Fault-tolerant quantum simulation of materials using Bloch 
orbitals

https://arxiv.org/abs/1905.09749
https://arxiv.org/abs/2202.01244
https://arxiv.org/abs/2302.05531


Why (cont’d)

It’s tedious! Tooling and software will let us:

- Reduce toil and error

- Re-use common of algo primitives

- Demo algos in a more accessible way with 
visualization, code, and examples.

- [1905.09749] How to factor 2048 bit RSA integers in 8 hours using 20 
million noisy qubits

- [2202.01244] Reliably assessing the electronic structure of cytochrome 
P450 on today's classical computers and tomorrow's quantum computers

- [2302.05531] Fault-tolerant quantum simulation of materials using Bloch 
orbitals

https://arxiv.org/abs/1905.09749
https://arxiv.org/abs/2202.01244
https://arxiv.org/abs/2302.05531


Expressing and Analyzing algorithms
We cannot currently run the algorithms we 
write down

We can make meaningful statements about 
their costs, composition, correctness, …

The bargain: the more you write down, the 
more you get out

The corollary: you don’t need to write down 
everything to get started



Reminder: Cirq-FT
● Arithmetic Gates 

○ AdditionaGate, AddMod, ContiguousRegisterGate, LessThanGate etc.
● State Preparation

○ PrepareUniformSuperposition: using a single round of amplitude amplification.
○ StatePreparationAliasSampling: QROM based state prep using classical alias sampling.

● Data Loading
○ QROM: Unary iteration based data loading using O(iteration_length) T-gates.
○ SelectSwapQROM: “advanced” QROM using O(sqrt(iteration_length)) T-gates.

● Qubitization 
○ QubitizationWalkOperator, ReflectionUsingPrepare, SelectOracle, PrepareOracle

● Robin’s Mean Estimation Algorithm
○ MeanEstimationOperator, ComplexPhaseOracle, ArcTan etc.

● Others
○ UnaryIteration base class to enable expressing nested coherent for-loops using 

multi-dimensional selection registers.
○ ProgrammableRotationGateArray: QROM based rotation synthesis introduced in Guang 

Hao’s double factorization paper

FT!

https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/arithmetic_gates.py#L246
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/arithmetic_gates.py#L329
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/arithmetic_gates.py#L170
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/arithmetic_gates.py#L24
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/prepare_uniform_superposition.py#L26
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/state_preparation.py#L42
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/qrom.py#L28
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/select_swap_qrom.py#L45
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/qubitization_walk_operator.py#L25
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/reflection_using_prepare.py#L26
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/select_and_prepare.py#L21
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/select_and_prepare.py#L61
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/mean_estimation/mean_estimation_operator.py#L63
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/mean_estimation/complex_phase_oracle.py#L26
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/mean_estimation/arctan.py#L24
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/unary_iteration_gate.py#L217
https://github.com/quantumlib/Cirq/blob/d23627605b94450a7195375ceb974e4684e1d668/cirq-ft/cirq_ft/algos/programmable_rotation_gate_array.py#L26


Expressing algorithms with Bloqs

Swap
Modular 

Exponentiation

https://qualtran.readthedocs.io/en/latest/_infra/Bloqs-Tutorial.html 

https://qualtran.readthedocs.io/en/latest/_infra/Bloqs-Tutorial.html


Bloqs are built out of other bloqs
Define your bloq’s 
implementation in terms of 
smaller bloqs.

Quantum variables follow 
linear logic

Our container type is 
CompositeBloq, which 
implements the Bloq interface

It is a directed, acyclic graph

Insert link to tutorial docs



Features of CompositeBloq

Sentinel value for 
“dangling” wires

Allocations are 
operations in the graph

Wires have a bitsize

Operations have 
named registers

Bookkeeping 
operations can 
split/join wires

No cloning / deleting



Analyzing algorithms

Bloq

Signature

Decomposition

Gate Counts

Cirq Equivalence

Tensors / Quimb

Classical action

The developer can annotate 
Bloqs with known information 
in addition to its decomposition

Protocols can be checked for 
consistency.



Classical Reversible Simulation
Annotate with classical action
(where appropriate)

Fuzz test your decomposition 
on classical inputs

https://qualtran.readthedocs.io/en/latest/simulation/classical_sim.html

https://qualtran.readthedocs.io/en/latest/simulation/classical_sim.html


Symbolics and Gate Counting
Annotate bloqs with expressions for 
(sub-)bloq counts

Big-O the parts you don’t care about

More consistency checks

Visualize your decomposition hierarchy

https://qualtran.readthedocs.io/en/latest/bloqs/factoring/ref-factoring.html

https://qualtran.readthedocs.io/en/latest/bloqs/factoring/ref-factoring.html


Numerical Simulation and Tensor Contraction



Bi-directional Cirq Interop
CirqGateAsBloq and BloqAsCirqGate 
both exist

As does conversion to and from 
cirq.Circuit

Subject to Cirq limitations: Shim to flat 
array of individual qubits.

https://qualtran.readthedocs.io/en/latest/cirq_interop/cirq_interop.html

https://qualtran.readthedocs.io/en/latest/cirq_interop/cirq_interop.html


Bi-directional Cirq Interop
CirqGateAsBloq and BloqAsCirqGate 
both exist

As does conversion to and from 
cirq.Circuit

Subject to Cirq limitations: Shim to flat 
array of individual qubits.

https://qualtran.readthedocs.io/en/latest/cirq_interop/cirq_interop.html

https://qualtran.readthedocs.io/en/latest/cirq_interop/cirq_interop.html


Qualtran Experimental Preview
We know things about the algorithms. Let’s write them 
down in a structured way!

Qualtran is open source as an experimental preview.
A lot more to come!

Please get in touch if you’re interested in contributing!
mpharrigan@google.com
https://github.com/quantumlib/Qualtran

- Raising issues…
- Writing Bloqs…
- Correctness protocols…
- Visualization protocols…

mailto:mpharrigan@google.com
https://github.com/quantumlib/Qualtran


Physical costs
Google is targeting lattice surgery on the 
(rotated) surface code with T or CCZ factories 
with Lambda~10 and 1us cycle time.

“Game of surface codes” compilation is fully 
general and gives precise numbers.

Manual layout is very involved. Automated 
optimizing layout is a huge software challenge.

Still a lot of uncertainty around the exact 
architecture (shape, suppression factor, error 
tolerance, cosmic rays, timeline, …)


