

Depth-Optimal Synthesis of Clifford Circuits with SAT Solvers

Tom Peham¹, Nina Brandl², Richard Kueng², Robert Wille^{1,3}, Lukas Burgholzer²

¹Technical University of Munich, Germany ²Johannes Kepler University Linz, Austria ³Software Competence Center Hagenberg, Austria

tom.peham@tum.de, nina.brandl@jku.at, richard.kueng@jku.at, robert.wille@tum.de, lukas.burgholzer@jku.at

https://www.cda.cit.tum.de/research/quantum/

Depth-Optimal Synthesis of Quantum Circuits J⊻U Section 1

■ Given a quantum circuit

■ How to synthesize a depth-optimal version of this?

Classical Equivalence Checking

■ Two classical n-bit circuits *C*, *C*′ are said to be equivalent if and only of the agree on all inputs:

 $\forall x \in \{0,1\}^n: Cx = C'x$

□ Negated:

$$\exists x \in \{0, 1\}^n : Cx \neq C'x$$

■ Can be expressed as a Boolean formula $\Phi_{C,C'}(x)$ □ Equivalent to SAT (**NP Complete**)

Classical (Depth-Optimal) Synthesis

Given a classical circuit C, find an equivalent circuit with maximal depth d_{max} :

 $\exists C_d, depth(C_d) \le d_{max}: \forall x \in \{0, 1\}^n: C_d x = Cx$

Since any logical circuit can be represented by binary encoding of size at most $poly(n d_{max})$:

$$\exists y \in \{0,1\}^{poly(n \, d_{max})} : \forall x \in \{0,1\}^n : \phi_C(y,x) = 1$$

• The problem of solving this QBF is complete for Σ_2^p

Going Quantum

Equivalence Checking: Two n-qubit quantum circuits *U*, *V* are equivalent if for all input states:

 $\forall |\psi\rangle \in \mathbb{C}^{2^n}: U|\psi\rangle = e^{i\phi}V|\psi\rangle$

- Theoretically infinitely many input states need to be checked
 - \Box Can be reduced to just 4^n but still exponential
- The (negated) quantum circuit equivalence checking problem is **QMA complete**
- Circuit Synthesis:

 $\exists U_d, depth(U_d) \leq d_{max}: \forall |\psi\rangle: U_d |\psi\rangle = e^{i\phi} U |\psi\rangle$

$$\exists U_d, depth(U_d) \leq d_{max}: \forall |\psi\rangle: U^{\dagger}U_d |\psi\rangle = e^{i\phi} |\psi\rangle$$

• At least as hard as classical synthesis

Clifford Optimization

Entanglement-Assisted Equivalence Checking JYU

Equivalence Checking:

$$\forall |\psi\rangle \in \mathbb{C}^{2^n} V^{\dagger} U |\psi\rangle = e^{i\phi} |\psi\rangle$$

Synthesis:

$$\exists U_d, depth(U_d) \leq d_{max}: \forall |\psi\rangle U^{\dagger}U_d |\psi\rangle = e^{i\phi} |\psi\rangle$$

Entanglement-Assisted Equivalence Checking J⊻U

Equivalence Checking:

$$(V^{\dagger}U) \otimes I |\omega_{2n}\rangle \langle \omega_{2n} | (V^{\dagger}U)^{\dagger} \otimes I = |\omega_{2n}\rangle \langle \omega_{2n} |$$

Synthesis:

$$\exists U_d, depth(U_d) \leq d_{max}: \forall |\psi\rangle U^{\dagger}U_d |\psi\rangle = e^{i\phi} |\psi\rangle$$

Entanglement-Assisted Equivalence Checking JYU

Equivalence Checking:

$$(V^{\dagger}U) \otimes I |\omega_{2n}\rangle \langle \omega_{2n} | (V^{\dagger}U)^{\dagger} \otimes I = |\omega_{2n}\rangle \langle \omega_{2n} |$$

Synthesis:

$$\exists U_d, depth(U_d) \leq d_{max}: (U_d^{\dagger}U) \otimes I | \omega_{2n} \rangle \langle \omega_{2n} | (U_d^{\dagger}U)^{\dagger} \otimes I = | \omega_{2n} \rangle \langle \omega_{2n} |$$

Efficient Encoding

$$\exists U_d, depth(U_d) \le d_{max} (U_d^{\dagger}U) \otimes I |\omega_{2n}\rangle \langle \omega_{2n} | (U_d^{\dagger}U)^{\dagger} \otimes I = |\omega_{2n}\rangle \langle \omega_{2n} |$$

- Efficient Simulation Efficient Encoding into CNF
- In general hard
- For Clifford Circuits simulation is polynomial
 We will explicitly construct a polynomial SAT encoding of the above formula

Theorem

Let *U* be a n-qubit Clifford unitary and fix a maximum depth $d_{max} \in \mathbb{N}$. Then, the decision problem "*is it possible to exactly reproduce U with (at most)* d_{max} *Clifford layers?*" can be rephrased as an instance of SAT with $O(n^2 d_{max})$ variables and $O(n^4 d_{max})$ clauses of constant size each.

The Gottesman-Knill Theorem

- JYU <u>sch</u>
- Clifford circuits can be efficiently simulated on classical computers
- Any *n*-qubit stabilizer state can be represented by

$$\pm P_{i,0}P_{i,1}\dots P_{i,n-1}$$

with

$$P_{i,j} \in \{I, X, Y, Z\}$$
 and $i, j = 0, 1, ..., n - 1$

which describe the generators for the group of stabilizers

Tableau representation

$$\begin{bmatrix} x_{0,0} & \cdots & x_{0,n-1} \\ \vdots & \ddots & \vdots \\ x_{n-1,0} & \cdots & x_{n-1,n-1} \end{bmatrix} \begin{bmatrix} z_{0,0} & \cdots & z_{0,n-1} \\ \vdots & \ddots & \vdots \\ z_{n-1,0} & \cdots & z_{n-1,n-1} \end{bmatrix} \begin{bmatrix} r_0 \\ \vdots \\ r_{n-1} \end{bmatrix} = \begin{bmatrix} x_0 & \cdots & x_{n-1} \end{bmatrix} \begin{bmatrix} z_0 & \cdots & z_{n-1} \end{bmatrix} \begin{bmatrix} r_1 \\ r_1 \end{bmatrix}$$

- Memory: n(2n + 1) bits (compared to 2^n complex amplitudes)
 - □ For the 2n-qubit state $|\omega_{2n}\rangle$ the tableau would require 2n(4n + 1) bits
 - □ This can be reduced to 2n(2n + 1) bits by considering stabilizers and *destabilizers*

Gate-Time Encoding

■ Gate variables:

$$Svars = \{g_q^d | g \in SQGs, q \in Q, 0 \le d < d_{max} \}$$

$$Tvars = \{g_{q_0,q_1}^d | g \in TQGs, q_0 \in Q, q_1 \in Q / \{q_0\} \}$$

Tableau variables:

$$\begin{aligned} Xvars &= \left\{ x_q^d \middle| q \in Q, 0 \le d < d_{max} \right\} \\ Zvars &= \left\{ z_q^d \middle| q \in Q, 0 \le d < d_{max} \right\} \\ Rvars &= \left\{ r^d \middle| 0 \le d < d_{max} \right\} \end{aligned}$$

Experimental Results for Exact Synthesis

Optimal			1	B	Bravyi et al.				
	d	G	t [s]	\overline{d}	G				
	5.70	11.40	0.33	11.70	16.10				
	6.60	16.70	4.10	16.00	23.50				
	7.60	25.00	381.95	22.90	37.30				
	-	-	-	29.40	55.10				
	-	-	-	37.00	70.20				
	-	-	-	42.10	86.30				
	-	-	-	53.50	108.80				
	-	-	-	59.90	128.70				
	-	-	-	72.20	157.30				
	-	-	-	78.90	170.10				
	-	-	-	91.40	207.10				
	-	-	-	100.30	235.20				

n: Number of qubits d: Average depth |G|: Average gate count t: average runtime

- 10 random Clifford circuits per number of Qubits
- Results averaged over all optimized circuits

Heuristic Version 1: Split Circuit Vertically

- Split circuit vertically into independent subcircuits
- Synthesize optimally in parallel

Heuristic Version 2: Split Circuit Horizontally J⊻U Sublement

- Identify subcircuits involving less qubits
- Synthesize optimally in parallel

Experimental Results for Heuristic Synthesis

	Optimal			Heuristic Vertical			Heuristic Horizontal			Bravyi et al.		
n	d	G	t [s]	d	G	t [s]	d	G	t [s]	d	G	t [s]
3	5.70	11.40	0.33							11.70	16.10	0.18
4	6.60	16.70	4.10							16.00	23.50	0.16
5	7.60	25.00	381.95							22.90	37.30	0.18
6	-	-	-							29.40	55.10	0.20
7	-	-	-							37.00	70.20	0.17
8	-	-	-							42.10	86.30	0.20
9	-	-	-							53.50	108.80	0.28
10	-	-	-							59.90	128.70	0.28
11	-	-	-							72.20	157.30	0.25
12	-	-	-							78.90	170.10	0.26
13	-	-	-							91.40	207.10	0.34
14	-	-	-							100.30	235.20	0.33

n: Number of qubits d: Average depth |G|: Average gate count t: average runtime

- 10 random Clifford circuits per number of Qubits
- Results averaged over all optimized circuits

MQT QMAP

pip install mqt.qmap

Conclusion

Clifford Circuit Synthesis is at most as hard as classical equivalence checking

$$\exists U_d, depth(U_d) \le d_{max}(U_d^{\dagger}U) \otimes I |\omega_{2n}\rangle \langle \omega_{2n} | (U_d^{\dagger}U)^{\dagger} \otimes I = |\omega_{2n}\rangle \langle \omega_{2n} |$$

 $|q_1\rangle$

 $|q_2\rangle - S$

 $|q_3\rangle$ - H

- Synthesis can be formulated as SAT problem
- SAT formulation can give **provably** depth-optimal Clifford circuits
- Better scaling with heuristic

Implementation publicly available

