
Fraunhofer

PHASE ACCUMULATION IN QRISP QUANTUM DICTIONARY
SYNTHESIS

Raphael Seidel, Sebastian Bock, Nikolay Tcholtchev, Manfred Hauswirth, July 23,
2023

1. Motivation

Fraunhofer 1
© Fraunhofer FOKUS

QUANTUM ALGORITHM DEVELOPMENT

Quantum hardware (especially
quantum volume) grew faster than
exponentially last year.

Quantum algorithm discovery and
use-case identification need to catch
up!

Fraunhofer 2
© Fraunhofer FOKUS

A CRITICAL PIECE OF THE PUZZLE

Hoefler, Häner & Troyer in1:
"A large range of problem areas [...] such as many current machine learning
training approaches, accelerating drug design and protein folding with Grover’s
algorithm, speeding up Monte Carlo simulations through quantum walks, as well
as more traditional scientific computing simulations including the solution of
many non-linear systems of equations, such as fluid dynamics in the turbulent
regime, weather, and climate simulations will not achieve quantum advantage
with current quantum algorithms in the foreseeable future.

1Hoefler, Häner and Troyer. 2023. Disentangling Hype from Practicality: On Realistically Achieving
Quantum Advantage.

Fraunhofer 3
© Fraunhofer FOKUS

A CRITICAL PIECE OF THE PUZZLE

Hoefler et al. conclude:

Algorithms in many proposed cases of application are simply not viable.

Blackbox approaches like Grover unlikely to yield practicality.

Road to quartic (and higher) speedup lies in abusing problem structure.

⇒ Quantum developers need to be as versatile, fast and specialized (modular code!)
as their classical equivalent!

Fraunhofer 4
© Fraunhofer FOKUS

QUANTUM ALGORITHM DEVELOPMENT

However: Algorithm development
via manual circuit construction is
literally the slowest, least modular
and most unstructured approach!
⇒ Finding the right programming
abstractions will be an important part
in achieving quantum advantage for
many fields of application.

Fraunhofer 5
© Fraunhofer FOKUS

QRISP

Qrisp is a fully compilable, high-level
programming frameworka.

Central building block is the
QuantumVariable.

Significantly enhances
development aspects like
prototyping, code size, maintainability,
bug-fixing/testing, modularity,
readability, refactoring etc.

awww.qrisp.eu, Setup: pip install qrispFraunhofer 6
© Fraunhofer FOKUS

QUANTUM PHASE ESTIMATION IN QRISP

Detailed introduction is out of scope. Instead we demonstrate a short quantum phase
estimation implementation:

from qrisp import QuantumFloat, control, QFT, h
def QPE(psi, U, precision):

res = QuantumFloat(precision, -precision)
h(res)
for i in range(precision):

with control(res[i]):
for j in range(2**i):

U(psi)
return QFT(res, inv = True)

Fraunhofer 7
© Fraunhofer FOKUS

2. QuantumDictionaries

Fraunhofer 8
© Fraunhofer FOKUS

QUANTUM DICTIONARIES

The QuantumDictionary is a Qrisp data structure, which enables developers to
load arbitrary non-algorithmic data relations in superposition

Let qd be a mapping/dictionary of arbitrary (finite) sets

qd : M → N, x → qd[x] (1)

The unitary of the corresponding QuantumDictionary acts as

Uqd |x⟩ |0⟩ = |x⟩ |qd[x]⟩ (2)

Fraunhofer 9
© Fraunhofer FOKUS

QUANTUM DICTIONARIES

Flexible tool for algorithm design.

Based on quantum logic synthesis
⇒ Scales rather bad compared to
more specific data-processing.

Found application in our TSP
solutiona (x4 speed-up compared to
QPE based, approach by Srinivasan et
al.).

awww.qrisp.eu

Fraunhofer 10
© Fraunhofer FOKUS

QUANTUM DICTIONARIES IN SOLVING TSP

def calc_travel_distance(itinerary, precision, adjacency_matrix):
from qrisp import QuantumFloat, QuantumDictionary
res = QuantumFloat(precision, -precision)
qd = QuantumDictionary(return_type = res)
n = len(itinerary)
for i in range(n):

for j in range(n):
qd[i, j] = adjacency_matrix[i, j]

for i in range(n):
trip_distance = qd[itinerary[i], itinerary[(i+1)%n]]
res += trip_distance
trip_distance.uncompute()

return res

Fraunhofer 11
© Fraunhofer FOKUS

3. QuantumDictionary Compilation

Fraunhofer 12
© Fraunhofer FOKUS

QUANTUMDICTIONARY COMPILATION

QuantumDictionaries are an inheritor of the regular Python dictionary and can be
thought of as a set of key/value pairs.

To compile the loading procedure from a QuantumDictionary, we follow the
following protocol:

1. Pick an integer labeling function for the elements of the key/value set.
2. For each key, identify the label in binary. Do the same for each value.
3. Stack the previously identified bit-strings to form a truth table.
4. Load the truth table values using quantum logic synthesis.

Fraunhofer 13
© Fraunhofer FOKUS

EXAMPLE TRUTH TABLE

x qd[x] lM(x) lN(qd[x]) lM(x)i lN(qd[x])i

0 c 0 2 0 0 0 0 0 0 1 0
0.5 g 1 6 0 0 1 0 0 1 1 0

1 f 2 5 0 1 0 0 0 1 0 1
1.5 u 3 20 0 1 1 1 0 1 0 0
-2 k 4 10 1 0 0 0 1 0 1 0

-1.5 a 5 0 1 0 1 0 0 0 0 0
-1 c 6 2 1 1 0 0 0 0 1 0

-0.5 u 7 20 1 1 1 1 0 1 0 0

Fraunhofer 14
© Fraunhofer FOKUS

4. Phase accumulation

Fraunhofer 15
© Fraunhofer FOKUS

PHASE ACCUMULATION

Phase accumulation is a novel
technique for quantum logic synthesis
of truth tables with many columns.

Based on Gray-code traversal.

Idea: Delay phase clean-up of each
truth-table column until the end and
perform accumulated correction
instead.

Fraunhofer 16
© Fraunhofer FOKUS

INTERLUDE: GRAY CODE TRAVERSAL

Gray code traversal is an algorithm that goes through a given set of parity
operators (eg. x0 ⊕ x1 ⊕ x42) and applies an RZ-gate to each of those.

For an arbitrary phase function ϕ Gray code traversal returns a quantum circuit
acting as

Ugray(ϕ) |x⟩ = exp(iϕ(x)) |x⟩ (3)

Can be used to synthesize an arbitrary single column, n-bit truth-table T by
wrapping the target qubit in H-gates and choosing

ϕ(j) =

π T(j0, j1..jn−1) ∧ jn
0 else

(4)

Fraunhofer 17
© Fraunhofer FOKUS

INTERLUDE: PERMEABILITY

Previous work of ours:

Definition.
An n-qubit unitary U ∈ SU(2n) is permeable on qubit i if and only if

ZiU = UZi. (5)

Where Zi is the Pauli Z Operator of qubit i.

Important implication: Two unitaries U,V commute if they only intersect on
permeable qubits. Enables DAG representation of quantum circuits abstracting
non-trivial commutation relations.

Fraunhofer 18
© Fraunhofer FOKUS

GRAY-CODE-TRAVERSAL DECOMPOSITION

In another previous work, we demonstrated that any n-qubit Gray code traversal
circuit can be decomposed into two operators Ua ∈ SU(2n) and Ub ∈ SU(2n−1).

Both Ua and Ub are permeable on all inputs.

x0 :

Gray code traversal

0

x1 : 1

x2 : 2 =

target : 3

x0 :

Ua

0

Ub

0

x1 : 1 1

x2 : 2 2

target : 3

Fraunhofer 19
© Fraunhofer FOKUS

MULTI COLUMN TRUTH TABLE SYNTHESIS

Naive approach to multi-column truth
table synthesis: Synthesize single
column truth-table sequentially.

Our work: Permute Ub operators to
the end of the circuit and perform
accumulated phase correction
using Gray-code traversal.

x0 :

U0
a

0

U0
b

0

U1
a

0

U1
b

0

x1 : 1 1 1 1

x2 : 2 2 2 2

T0 :
3

T1 :
3

= x0 :

U0
a

0

U1
a

0

U0
b

0

U1
b

0

x1 : 1 1 1 1

x2 : 2 2 2 2

T0 :
3

T1 :
3

= x0 :

U0
a

0

U1
a

0

U0
bU1

b

0

x1 : 1 1 1

x2 : 2 2 2

T0 :
3

T1 :
3

Fraunhofer 20
© Fraunhofer FOKUS

PERFORMANCE - GATE COUNT

Consider a multi-column truth table

T : Fn
2 → F

m
2 , x → T(x)

Worst case CNOT/RZ gate count:

#CNOT(Gray synthesis(T)) = m2n+1 − (m − 1)2n

Fraunhofer 21
© Fraunhofer FOKUS

PERFORMANCE - CIRCUIT DEPTH

Circuit depth could be estimated similarly, BUT:
High amount of idle time for control qubits.

Qrisp compiler performs automatic parallelization of different Ua operators.

Based on steered linearization of the previously mentioned permeability DAG.
This technique is not restricted to the use-case at hand. More details will be
published soon.

For m ≪ n: Small depth overhead for additional truth-table columns.

Fraunhofer 22
© Fraunhofer FOKUS

EXAMPLE: UA PARALLELIZATION

Without parallelism: Depth 15
ctrl.0 : • • • •

ctrl.1 : • • • •

T .0 : H P (π4) P (−π4) P (π4) P (−π4) H

T .1 : H P (π4) P (−π4) P (π4) P (−π4) H

With parallelism: Depth 10
ctrl.0 : • • • •

ctrl.1 : • • • •

T .0 : U3 (
π
2 ,
π
4 , π) P (−π4) P (π4) P (−π4) H

T .1 : U3 (
π
2 ,
π
4 , π) P (−π4) P (π4) P (−π4) H

Fraunhofer 23
© Fraunhofer FOKUS

PERFORMANCE - CIRCUIT DEPTH

Fraunhofer 24
© Fraunhofer FOKUS

5. Summary

Fraunhofer 25
© Fraunhofer FOKUS

SUMMARY

Abstract programming will play an important role in achieving quantum
advantage outside factoring and quantum chemistry.

Qrisp is a high-level programming language, which contains state of the art
compilation routines, yet provides an accessible user interface.

QuantumDictionaries are a Qrisp data-structure, that permit developers to
include real-world data in their quantum algorithms.

Their compilation is based on quantum logic synthesis, for which we presented
an effective technique for resource optimization.

Fraunhofer 26
© Fraunhofer FOKUS

QUESTIONS?

	Motivation
	QuantumDictionaries
	QuantumDictionary Compilation
	Phase accumulation
	Summary

