
IWQC 2023

Quantum Circuits for State
Permutations using Routing via
Matchings and Multiplexed-Rx

Yao Tang, Pablo André-Martínez, Silas Dilkes

IWQC 2023

Contents
1. Background
1.1. State Permutation Problem
1.2. Naive Approach
1.3. Multiplexed-X Gate

2. Method
2.1. Hypercube Formulation
2.2. Routing via Matching
2.3. Example
2.4. Using Multiplexed-Rx gate

3. Results

IWQC 2023

State Permutation Problem
Given a permutation of basis states, implement the permutation using a
quantum circuit.

Also known as Boolean Reversible Function Synthesis

IWQC 2023

State Permutation Problem
Given a permutation of basis states, implement the permutation using a
quantum circuit.

Also known as Boolean Reversible Function Synthesis

E.g. Given permutation |00>:|11>, |01>:|10>, |10>:|01>, |11>:|00>

IWQC 2023

State Permutation Problem
Given a permutation of basis states, implement the permutation using a
quantum circuit.

Also known as Boolean Reversible Function Synthesis

E.g. Given permutation |00>:|11>, |01>:|10>, |10>:|01>, |11>:|00>

permute

IWQC 2023

Naive Approach
1. Traverse the basis states following the Gray code.

000, 001, 011, 010, 110,...

2. Bubble sort the states.
3. Each swap is implemented using a Multi-controlled Toffoli gate.
E.g.

IWQC 2023

Naive Approach
1. Traverse the basis states following the Gray code.

000, 001, 011, 010, 110,...

2. Bubble sort the states.
3. Each swap is implemented using a Multi-controlled Toffoli gate.
E.g.

IWQC 2023

Multiplexed-X
Def:

Special case of multiplexor - apply either I or X to the target qubit
according to the bitstring on the control qubits.

Also known as Single-target Boolean Function

IWQC 2023

Multiplexed-X
Def:

Special case of multiplexor - apply either I or X to the target qubit
according to the bitstring on the control qubits.

IWQC 2023

Multiplexed-X
Def:

Special case of multiplexor - apply either I or X to the target qubit
according to the bitstring on the control qubits.

e.g.

IWQC 2023

Multiplexed-X
Def:

Special case of multiplexor - apply either I or X to the target qubit
according to the bitstring on the control qubits.

e.g.

Perform multiple
swaps simultaneously

IWQC 2023

Contents
1. Background
1.1. State Permutation Problem
1.2. Naive Approach
1.3. Multiplexed-X Gate

2. Method
2.1. Hypercube Formulation
2.2. Routing via Matching
2.3. Example
2.4. Using Multiplexed-Rx gate

3. Results

IWQC 2023

Hypercube Formulation
State graph:

For any n-qubit system, we define a hypercube graph G(V,E), where V
is the set all n-qubit basis states, and (u, v) ∈ E iff Hamming(u, v) = 1.

|00> |01>

|11>|10>

2D cube 4D cube

IWQC 2023

Hypercube Formulation (continued)
Given a state graph, and a set of tokens placed across the graphs vertices,
each with a one-to-one correspondence to a destination vertex. The goal is
to move the tokens to their respective destinations.

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

|00> |01>

|11>|10> 𝛂0𝛂3

𝛂2 𝛂1

IWQC 2023

Routing via Matching
Definition: Swapping the tokens on any set of disjoint edges counts as one
operation.

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

One
operation

IWQC 2023

Routing via Matching
(Alon et al., 1994): Routing via Matching on a hypercube can be done
using 2n - 1 operations. Where n is the dimension of the cube, and each
operation only involves swaps on parallel edges.

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

We call this swap along
q because the bitstrings
at the endpoints of these
edges only differ at q

IWQC 2023

Routing via Matching (algorithm)
Parallel Subcubes:

q1,q2=00

q1,q2=01

q1,q2=10

q1,q2=11

q1,q2 defines
four parallel
subcubes

IWQC 2023

Routing via Matching (algorithm)
For a n-qubit problem, let Q be the set of qubits {q0, q1,.., qn-1}

Algorithm: given a set of parallel subcubes defined by qubits P ⊆ Q:

1. Pick a qubit q ∈ Q/P to further partition each subcube into two parallel
subcubes. If Q/P = ∅, return.

2. For each pair of subcubes obtained from the partitioning, swap tokens along
q, such that the destinations of the tokens in each subcube covers all possible
bitstrings for Q/P/{q}. (One Multiplexed-X)

3. Recursively call this function with P = P ∪{q}.
4. Swap any token with its neighbour along q when its current location and

destination doesn’t match at bit q. (One Multiplexed-X)

IWQC 2023

Example

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

|00> |01>

|11>|10> 𝛂0𝛂3

𝛂2 𝛂1

IWQC 2023

Example

We rename each token with its destination bitstring

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

|00> |01>

|11>|10> 𝛂0𝛂3

𝛂2 𝛂1

IWQC 2023

Example

|00> |01>

|11>|10>

11 01

00 10

IWQC 2023

Example
1. Partition along q0

|00> |01>

|11>|10>

11 01

00 10

q0=0

q0=1

IWQC 2023

Example
2. Distribute along q0

|00> |01>

|11>|10>

11 01

00 10

q0=0

q0=1

Tokens 11 and 01 don’t
cover all possible
bitstrings of q1

This corresponds to a
bipartite perfect matching
problem, and we use a
off-the-shelf
Hopcroft-Karp algorithm
to solve it.

IWQC 2023

|00> |01>

|11>|10>

00 01

11 10

Example
2. Distribute along q0

q0=0

q0=1

Now, tokens 00 and 01
do cover all possible
bitstrings of q1

IWQC 2023

|00> |01>

|11>|10>

00 01

11 10

3. Recursive call
1. Partition along q1

Example

q0=0

q0=1

q1=0 q1=1

IWQC 2023

|00> |01>

|11>|10>

00 01

11 10

3. Recursive call
2. No action

Example

q0=0

q0=1

q1=0 q1=1

IWQC 2023

|00> |01>

|11>|10>

00 01

11 10

3. Recursive call
3. Recursive call, return

Example

q0=0

q0=1

q1=0 q1=1

IWQC 2023

3. Recursive call
4. Swap along q1

|00> |01>

|11>|10>

00 01

11 10

Example

q0=0

q0=1

q1=0 q1=1

Destinations doesn’t
match the current
locations at q1

IWQC 2023

|00> |01>

|11>|10>

00 01

10 11

3. Recursive call
4. Swap along q1

Example

q0=0

q0=1

q1=0 q1=1

IWQC 2023

4. Swap along q0, no action, done

|00> |01>

|11>|10>

00 01

10 11

Example

q0=0

q0=1

IWQC 2023

Routing via Matching
We later realised that the circuit produced by our algorithm is equivalent
to the Young-subgroup based synthesis method proposed in (Soeken et
al., 2019)

IWQC 2023

Using Multiplexed-Rx gates
We further improved our approach by replacing the Multiplexed-X gates
with Multiplexed-Rx(𝜋) gates. We correct the phase difference introduced
by the rotation gates by a diagonal operator at the end, which we
decompose as a cascade of Multiplexed-Rz gates.

IWQC 2023

Using Multiplexed-Rx gates
Multiplexed-Rx:

IWQC 2023

Using Multiplexed-Rx gates
Multiplexed-Rx:

Less expensive than Multiplexed-X

IWQC 2023

Contents
1. Background
1.1. State Permutation Problem
1.2. Naive Approach
1.3. Multiplexed-X Gate

2. Method
2.1. Hypercube Formulation
2.2. Routing via Matching
2.3. Example
2.4. Using Multiplexed-Rx gate

3. Results

IWQC 2023

Results
The proposed method is implemented in TKET as ToffoliBox. We
compared the performance of ToffoliBox against (Soeken et al., 2019),
which is implemented in Tweedledum.

The benchmark consists of random generated permutations and a set of
permutations from the TOF(n), PRIME(n), and HWB(n) families.

We also compared further improvement to CNOT count by applying post-
synthesis TKET optimisation passes after synthesis, namely CliffordSimp,
SynthesiseTket, and RemoveRedundancies.

IWQC 2023

Results

IWQC 2023

Results

IWQC 2023

Further work
• Optimise the order in which you pick qubits

• Use a combination of Rx(𝜋), Rx(-𝜋), Ry(𝜋) and Ry(-𝜋)

• Control logic simplification

• Approximated synthesis methods

• Optimal base case solution (e.g. 3D cube)

IWQC 2023

Conclusion
❖ Solving the state permutation problem by treating it as a Routing via

Matchings on hypercubes.
➢ While this formulation is equivalent to a previously proposed

Young-subgroup based synthesis method, our approach might offer a
new perspective.

❖ We introduce the use of Multiplexed-Rx(π) gates for permutation
synthesis, resulting in significant reductions in CNOT gate counts.
➢ We showed how this outperforms the known state of the art available in

Tweedledum for CNOT count.

IWQC 2023

Thank you!
yao.tang@quantinuum.com

