
IWQC 2023

Quantum Circuits for State 
Permutations using Routing via 
Matchings and Multiplexed-Rx

Yao Tang, Pablo André-Martínez, Silas Dilkes



IWQC 2023

Contents
1. Background
1.1. State Permutation Problem
1.2. Naive Approach
1.3. Multiplexed-X Gate

2. Method
2.1. Hypercube Formulation
2.2. Routing via Matching
2.3. Example
2.4. Using Multiplexed-Rx gate

3. Results



IWQC 2023

State Permutation Problem
Given a permutation of basis states, implement the permutation using a 
quantum circuit.

Also known as Boolean Reversible Function Synthesis
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quantum circuit.

Also known as Boolean Reversible Function Synthesis

E.g. Given permutation |00>:|11>, |01>:|10>, |10>:|01>, |11>:|00>

permute
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Naive Approach
1. Traverse the basis states following the Gray code.

000, 001, 011, 010, 110,...

2. Bubble sort the states.
3. Each swap is implemented using a Multi-controlled Toffoli gate.
E.g. 
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Multiplexed-X
Def:

Special case of multiplexor - apply either I or X to the target qubit 
according to the bitstring on the control qubits.

Also known as Single-target Boolean Function



IWQC 2023

Multiplexed-X
Def:

Special case of multiplexor - apply either I or X to the target qubit 
according to the bitstring on the control qubits.



IWQC 2023

Multiplexed-X
Def:

Special case of multiplexor - apply either I or X to the target qubit 
according to the bitstring on the control qubits.

e.g.



IWQC 2023

Multiplexed-X
Def:

Special case of multiplexor - apply either I or X to the target qubit 
according to the bitstring on the control qubits.

e.g.

Perform multiple 
swaps simultaneously
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Hypercube Formulation
State graph:

For any n-qubit system, we define a hypercube graph G(V,E), where V 
is the set all n-qubit basis states, and (u, v) ∈ E iff Hamming(u, v) = 1.

 
|00> |01>

|11>|10>

2D cube 4D cube



IWQC 2023

Hypercube Formulation (continued)
Given a state graph, and a set of tokens placed across the graphs vertices, 
each with a one-to-one correspondence to a destination vertex. The goal is 
to move the tokens to their respective destinations.

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

|00> |01>

|11>|10> 𝛂0𝛂3

𝛂2 𝛂1
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Routing via Matching
Definition: Swapping the tokens on any set of disjoint edges counts as one 
operation.

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

One 
operation
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Routing via Matching
(Alon et al., 1994): Routing via Matching on a hypercube can be done 
using 2n - 1 operations. Where n is the dimension of the cube, and each 
operation only involves swaps on parallel edges.

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

We call this swap along 
q because the bitstrings 
at the endpoints of these 
edges only differ at q
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Routing via Matching (algorithm)
Parallel Subcubes:

q1,q2=00

q1,q2=01

q1,q2=10

q1,q2=11

q1,q2 defines 
four parallel 
subcubes
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Routing via Matching (algorithm)
For a n-qubit problem, let Q be the set of qubits {q0, q1,.., qn-1}

Algorithm: given a set of parallel subcubes defined by qubits P ⊆ Q:

1. Pick a qubit q ∈ Q/P to further partition each subcube into two parallel 
subcubes. If Q/P = ∅, return.

2. For each pair of subcubes obtained from the partitioning, swap tokens along 
q, such that the destinations of the tokens in each subcube covers all possible 
bitstrings for Q/P/{q}. (One Multiplexed-X)

3. Recursively call this function with P = P ∪{q}.
4. Swap any token with its neighbour along q when its current location and 

destination doesn’t match at bit q. (One Multiplexed-X)
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Example

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

|00> |01>

|11>|10> 𝛂0𝛂3

𝛂2 𝛂1
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Example

We rename each token with its destination bitstring

|00> |01>

|11>|10>

𝛂0 𝛂1

𝛂2 𝛂3

|00> |01>

|11>|10> 𝛂0𝛂3

𝛂2 𝛂1
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Example

|00> |01>

|11>|10>

11 01

00 10
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Example
1. Partition along q0

|00> |01>

|11>|10>

11 01

00 10

q0=0

q0=1
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Example
2. Distribute along q0

|00> |01>

|11>|10>

11 01

00 10

q0=0

q0=1

Tokens 11 and 01 don’t 
cover all possible 
bitstrings of q1 

This corresponds to a 
bipartite perfect matching 
problem, and we use a 
off-the-shelf 
Hopcroft-Karp algorithm 
to solve it.
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|00> |01>

|11>|10>

00 01

11 10

Example
2. Distribute along q0

q0=0

q0=1

Now, tokens 00 and 01 
do cover all possible 
bitstrings of q1 
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|00> |01>

|11>|10>

00 01

11 10

3. Recursive call
1. Partition along q1

Example

q0=0

q0=1

q1=0 q1=1
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|00> |01>

|11>|10>

00 01

11 10

3. Recursive call
2. No action

Example

q0=0

q0=1

q1=0 q1=1
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|00> |01>

|11>|10>

00 01

11 10

3. Recursive call
3. Recursive call, return

Example

q0=0

q0=1

q1=0 q1=1
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3. Recursive call
4. Swap along q1

|00> |01>

|11>|10>

00 01

11 10

Example

q0=0

q0=1

q1=0 q1=1

Destinations doesn’t 
match the current 
locations at q1
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|00> |01>

|11>|10>

00 01

10 11

3. Recursive call
4. Swap along q1

Example

q0=0

q0=1

q1=0 q1=1
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4. Swap along q0, no action, done

|00> |01>

|11>|10>

00 01

10 11

Example

q0=0

q0=1
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Routing via Matching
We later realised that the circuit produced by our algorithm is equivalent 
to the Young-subgroup based synthesis method proposed in (Soeken et 
al., 2019)
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Using Multiplexed-Rx gates
We further improved our approach by replacing the Multiplexed-X gates 
with Multiplexed-Rx(𝜋) gates. We correct the phase difference introduced 
by the rotation gates by a diagonal operator at the end, which we 
decompose as a cascade of Multiplexed-Rz gates.
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Using Multiplexed-Rx gates
Multiplexed-Rx:
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Using Multiplexed-Rx gates
Multiplexed-Rx:

Less expensive than Multiplexed-X
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Results
The proposed method is implemented in TKET as ToffoliBox. We 
compared the performance of ToffoliBox against (Soeken et al., 2019), 
which is implemented in Tweedledum.

The benchmark consists of random generated permutations and a set of 
permutations from the TOF(n), PRIME(n), and HWB(n) families.

We also compared further improvement to CNOT count by applying post- 
synthesis TKET optimisation passes after synthesis, namely CliffordSimp, 
SynthesiseTket, and RemoveRedundancies.
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Further work
• Optimise the order in which you pick qubits

• Use a combination of Rx(𝜋), Rx(-𝜋), Ry(𝜋) and Ry(-𝜋)

• Control logic simplification

• Approximated synthesis methods

• Optimal base case solution (e.g. 3D cube)
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Conclusion
❖ Solving the state permutation problem by treating it as a Routing via 

Matchings on hypercubes.
➢ While this formulation is equivalent to a previously proposed 

Young-subgroup based synthesis method, our approach might offer a 
new perspective.

❖ We introduce the use of Multiplexed-Rx(π) gates for permutation 
synthesis, resulting in significant reductions in CNOT gate counts.
➢ We showed how this outperforms the known state of the art available in 

Tweedledum for CNOT count.
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Thank you!
yao.tang@quantinuum.com


