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Parameterized Circuit Ansatze

Parameterized U3 Gates

» Fixed structure and variable function / N

 Maps parameters to quantum programs %

« Consider parameterized single-qubit and E'_f] )
fixed multi-qubit gates Fod CNGT Gates L

* Ansatze are extremely expressive Example circuit ansatz

1. Can we find minimal ansétze for programs?
2. Can the ansatz that implements a program be predicted?
3. Are anséatze portable across gate sets?
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The BQSKIit framework allows us to

[B S K | t] use parameterized circuit ansatze to

Ansatz Search

explore program structure.
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Numerical Circuit Instantiation

Instantiation: Given a parameterized quantum circuit
C :R* — U(N) and a target unitary V € U(N), solve

arg min(I — VC(0))

0 (error)
Parameterized Circuit Instantiated Circuit
U3 KL U3 A U3 (5,0, 7) |-
— U3 U U3 : =’ U3(0,g,0)]—

Single qubit gates have no
fixed parameter settings

Single qubit gate parameters
are real numbers

Numerical
Optimization

B SKit
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Numerical Instantiation Flows with BQSKit

- BQSKit supports specifying program
functionality with
* Unitary matrices U=¢g®H

Create Initial Circuit
Template

[N b C
¢ Hamiltonians (sums of Hermitian operators) 2.0 e0eO etantiation
* Loss functions to minimize <H>

* Parametare t~ = narqmeterized quantum circuit AT o
ansatz e = [61 o ek] Template acceptable?
« BQSKit's general instantiation workflow w ]
enables the optimization, synthesis, and i
_Synthesized Circuit

transpilation of quantum circuits

B- SKit 8
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Instantiation and Scaling

« Instantiation/solving for parameters has width/depth limits no matter the

encoding used
* Recent work (QFactor) shows how to scale instantiation to 12 qubits!

» Wide unitaries/circuits must be broken into manageable panels
» Each panel is associated with a partitioned unitary

« This method can handle circuits with 1000s qubits

%/\ /_\ﬂ
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P 4 ~—_|omt
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1. Can we find minimal anséatze for programs?

( 1 1.0 0 0 0 0 0'\
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V210 0 0 0 0 0 -1 1
000 0 0 0 -1 -1
000 0 -1 -1 0 0

k 0 0 0 0 -1 1 0 0_)

Program specified as Unitary
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Lowest Gate Count Circuit Ansatz
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Approach

1.

Collect a large dataset of unitaries
- Consider unitaries from partitioned circuits | :

S
lLoo
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cococoo~
||
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cococorroo
~locococoo

cocococo )~
cocon

- Same algorithms of various widths

L]

- Different algorithms
Enumerate circuit ansatze up to a certain depth
Try instantiating each ansatz given each unitary

1. Can we find minimal ansétze for programs?
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Enumerating Ansatze

£00g [Gs
sllF (12

* Consider a tree of possible circuit

ansatze

* Assign an integer to each circuit
ansatz

* Stop enumeration at a desired depth to
keep finite output space

* Works because subcircuits from
circuits are relatively simple
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Instantiating each Ansatz

Target
Unitary
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Yes/No: Circuit Ansatz can
implement Target Unitary

Circuit
Ansatz
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Patterns Occur when Algorithms Scale

Histogram of Circuit Ansatze in TFIMs with 8, 16, and 50 Qubits ~ IV 16 has 00
as

0.0 02 0.4 0.6 a8 partitions. 82/99
partitions are
implemented by
this ansatz y

~

18 qubits

[ 16 qubits
%% N 50 qubits

Three ansétze account for 99% of ansatze in TFIM circuits of various widths

Bo SKit 14
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Patterns Occur When Algorithms are Composed
Histogram of Circuit Ansatze in QFT 12 and Shor 24
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These ansatze
illustrate that
structure of QFT is

QFT 12 is contained in Shor 24: QFT and IQFT appear 16 times

Weiden, Improving Quantum Circuit Synthesis with Machine Learning

found in Shor
circuit as well
\_ _J
COQFT 12
B Shor 24
|
B SKit 15



Patterns Appear in Circuit Ansatze

( )
1. Can we find minimal ansétze for programs?

. J

4 )

Yes, and patterns in structure can be observed for

unitaries taken from partitioned quantum circuits.
-

J

Partitioned unitaries:

- Same circuit family but different widths share ansatze

Ansatze from different circuits capture containment

relationships
No does not work for random unitaries
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2. Can the ansatz that implements a
program be predicted?

4 —_—_— ae )
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A Set of Unitaries from

Partitioned Circuit Panels A Set of Circuit Ansatze
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When Can You Expect to Make Predictions?

Example:
For these two datasets, where would you expect the next data point to fall?

Rules of Thumb:
1. Low dimensional patterns make data predictable
2. Low dimensional data are compressible

B SKit 18



Patterns in Unitaries

e Principal Component Analysis reveals low [u] | | /[u]
dimensionality of unitaries of interest = —1
* Implies learning patterns in unitaries is possible [l [ | | /l_/[U]
vl = v
1001

Partitioned unitaries are
taken from circuit panels

00
o

()]
o

‘0"‘.
| 57.2%

Cumulative Variance Explained (%)

40 UECSH Z¢R UIE Ceq
"1 31.0%
20 —— Partitioned Unitaries .
o7 S | | o Random Unitaries PCA quantifies how much we
= & 8¢ Ba o B & 5 & can compress these unitaries

Principle Components

B SKit 19
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Using Patterns: Scaling Synthesis

* Synthesis = circuit ansatz search + instantiation o
« Navigating the search tree must be done strategically T S| -
« There are many possible circuits to try Z . it
_ T ) -

] e
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Wide unitaries/circuits must be broken into
manageable pieces.
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Seeded Synthesis

Find a mapping from unitaries to circuits
* Start synthesis closer to the

1 1 0 O 0 0 0 0
) . . 1 -1 0 0 0 0 0 0 —| |——D7—| l—
solution circuit i 0o 1T 0 0 0 0 NN
. . V210 0 0 0 0 0 -1 1 _>_| |‘€
* Alleviates the expensive tree OO A ] AN
00 00 -1 1 0 0 U L]

search component of full

bottom-up synthesis

STHEHS /*ﬁﬂﬂf—r&[t.

:

| O0——
Root Start
TF=—N JE-CiiEa
= Seed: 0 Root: 4 .
TN el SRy
ROOt'3\ Seed: 1 Root: 5
RootrO\ Oo— | - o
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1) A target unitary

and topology
information are

given as inputs.

Accelerating Synthesis

» QSeed: A seeded synthesis algorithm that uses
machine learning to predict good seed circuits

e Paper: Improving Quantum Circuit
Synthesis with Machine Learning

2) A recommender
model analyzes
the inputs and
produces a seed
circuit.

Seed
Circuit

Circuit Name Training Widths Test Widths

add 17, 65 41

grover - 10 i

heisenberg 4,6,17,8, 16, 32, 64 5 3) Seeded synthesis

hhl 8 6 i i

hubbard 4, 18, 50 8 beglns. USI!]g e
mult 8. 32, 64 16 seed circuit pro-
qae 11, 33, 101 65 vided by the
qft 3,4,8, 16,32 64
qml 4,25, 60, 108 128 recommender.
qpe 6, 10, 14 18
shor 16, 32 64
tfim 3,4,5,6,7, 8, 16, 32, 64
vge 12, 14 18

Table I: Split of circuits withheld from recommender training
for testing. No Grover’s algorithm circuits are used in training.

Weiden, Improving Quantum Circuit Synthesis with Machine Learning

4) An instantiated cir-
cuit that implements
the target unitary is
produced as output.




Accelerating Synthesis

1.0 0.8
—e— QSeed: E[calls] =2.37 —e— QSeed: E[cnots] =0.92
1 —e— QSearch: E[calls] =12.05 —e— QSearch: E[cnots] =0.91
08 —e— Randomly Seeded: [ calls] =2.79 0.6 —e— Randomly Seeded: £[cnots] = 1.19
3061 9
:
a 55 - 0.2
0.0 1 0.0 1
123456 7 8 9 10111213 14 15 16 17 18 19 20 02 06 10 14 18 22 26 30
Number of Instantiation Calls Optimized / Original CNOT Gate Count
Speedup: most synthesis runs Solution quality: gate counts very
require only one instantiation call closely match optimal implementation

Bo SKit 23
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Accelerating Synthesis

)

J

—e— QSeed: E[cnots] =0.92
—e— QSearch: E[cnots] =0.91
—e— Randomly Seeded: £[cnots] = 1.19

Full bottom-up synthesis requires an

10, QSeed makes an average of 2.4
ol ] instantiation calls per unitary
0.6
g 04/ : o
& average of 12.1 instantiation calls
0.2
0.0 A 0.0

123 456 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Instantiation Calls

Speedup: most synthesis runs
require only one instantiation call

Solution quality: gate counts very
closely match optimal implementation

02

Weiden, Improving Quantum Circuit Synthesis with Machine Learning

06 10 14 18 22 26 30
Optimized / Original CNOT Gate Count

B SKit
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Accelerating Synthesis

B S | e —e— QSeed: E[cnots] =0.92

08 ] QSeed solutions closely match e
— gate counts of full bottom-up
g solutions
50.4- .

0.2

0.0

123 456 7 8 9 1011 12 13 14 15 16 17 18 19 20
Number of Instantiation Calls

Speedup: most synthesis runs
require only one instantiation call

02 06 10 14 18 22 26 30
Optimized / Original CNOT Gate Count

Solution quality: gate counts very

closely match optimal implementation

B SKit
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ACCEIGrati ng Synthes is Shor 64 is synthesized >3x faster!
Uses 10.3% fewer CNOTSs than Qiskit!

/

v 4.0x1 5672.3
=
F £ 3.0x 1 _ 50.6 167.3 22.3
Average w3 10.5 vii 454.7
speedup of 2.4x | & & 2.0x- 24 16.1
"-C"L% 3.0 170.7
S 1.0x-
? [ [N [N [ [ [ | ) I I (O
& 0.0x -
.é“ ‘
Average £ S _01-
CNOT count <85
. O
difference of o= _oo-
o >9 Y
1.0% gLZ) [ QSearch
2 03 B QSeed
oy , 90 fey ”/;/ /’Ubl %/. ‘7%' erl %/I %e: 3/70] 17‘//)7 "qel
L2, "@czobergs? <6 be"’e Q2 ~65 ~60 "1 T1s ey L6g "N
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Generalizing to Unseen Circuits

127.0 | g *™] - :
- Eo ] » Simple structures dominate the
28 50x] Grover 10 circuit
£ 10 « Examples of these simple
S structures are scattered
2L throughout other circuits
S
=202 6 \ “
g o3 BN QSeed =
Grover 10 DA r
-

%3[
\ J
)
. J \\

Time savings and comparable solution quality !
maintained for unseen circuits

B SKit 27
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2. Can the ansatz that implements a
program be predicted?

~

Yes. We can predict ansétze that
implement unitaries taken from
partitioned quantum circuits. These
results can generalize to unseen
\_ partitioned unitaries. )
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3. Are ansétze portable across gate sets?

as ) 4 )
O ? ﬁ
—{ o+ ) [
clomls ololors
—{ < {1+
—1 o1
\ _/ \_ _J
Ansatze Expressed with Ansatze Expressed with
CX Gates CZ Gates
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BQSKit Retargeting and Transpilation

* More generic than 1-1 rules (KAK, etc.)

1) Replace gate wtih
varying number of new gate

3) Select best circuit with
acceptable error

* Works for gate sets with multiple entangling gates :

* For a given ansatz transpilation must choose

between O(g**’) ansatze in the new gate set
g: 2-qubit gates in ansatz

x: 2-qubit gates to implement arbitrary unitary

* Are ansatze/structures preserved when gate
set changes?

Younis, Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation

A

2H -3 &

- % 2) Instantiate Gircuits ng N
— EE%% Rt
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L Dttt Tt —
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BQSKit Transpiled Circuits are State of the Art

» Effective due to global transformations

* Produces circuits with an average of 12% fewer two-qubit gates
* Up to 51% reduction of two-qubit gates

« Existing commercial compilers have many conversion limitations
 Portable and flexible (N-qubit gates, qudits)

Benchmark | CNOT Gates | Single-qubit Gates

adder9 98 64

adder63 1405 2885 .

mul10 163 107  BQSKit framework and the default

e e = instantiator configured with four multi-
qaoa

qaoal0 85 40 starts and 1012 success threshold

hub4 i - « Retargetting converts CNOTs to CZ, XX,
hub8 2196 1513 :

hub12 8140 4932 Z2Z, \/iSwap, and SYC

EXaREES ol 80 » Compared against Cirq, Qiskit, and Tket
tim16 240 1200

tim64 4032 20160

tfxy16 240 1200

tfxy64 4032 20160

B SKit 31
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Algorithms Have Gate Set Preferences

All Gate Types per CNOT

cz
XX
ZZ

”””””””””””” L SQisw
W Sycamore .
B SQiSW+Sycamore

adder9 adder63 mull0 mul60 gaoa5 gaoal0 hub4  hub8

Can statements can we make about transpiled circuit ansétze?

Younis, Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation

hubl2 grover5 tfiml6 tfim64 tfxyl6e tfxy64
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Retargeting Ansatze

- Similarities between ansatz distributions appear to be linked
to gate location in the Weyl Chamber

When Weyl Chamber location is the same,
ansatze in different gate sets are similar

(v

\CX.CZ, B

~

arious Gates in
the Weyl Chamber

Sycamor
e

cX / cz \ XX B Sycamore

0.40 0.40 0.40 0.40

/ \/ 0.35 \ 0.35 .35

0 0.30 0
0.25 1 0.25
0.20 4 0.20
0.15 4 0.15
0.10 4 0.10
0.05 4 0.05
0.00 - 0.00

[} 200 400 600 800 0 200 400 600 800 1000 0 200 400 600 800 100C 0 200 400 600 800 1000 0 200 40¢ 600 800 1000
Ansatz Labels Ansatz Labels Ansatz Labels Ansatz Labels Ansatz Labels

Histograms of Ansatze for Mult 60 Unitaries
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Retargeting Ansatze

- Similarities between ansatz distributions appear to be linked
to gate location in the Weyl Chamber

(v

e

arious Gates in
the Weyl Chamber

Sycamor

~

4 Y

. . . [
Otherwise map is less straightforward, but
empirically 1-to-few (far smaller than /

exponential upper bound) \oX. €2 B J

" y XX

CX cz XX B Sycamore
/ 0.40 0.40 0.40 | 0.40 \
B TR e R W S R e T P R

Histograms of Ansatze for Mult 60 Unitaries
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[ 3. Are ansétze portable across gate sets? J

-

\_

Yes. When non-local parameters of gates

are the same, there is a 1-to-1 mapping
between ansétze. Otherwise there is a
1-to-few mapping.

~

J
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Conclusions

1. Can we find minimal ansatze for programs?
Yes, and patterns in structure can be observed for unitaries taken from
partitioned quantum circuits.

2. Can the ansatz that implements a program be predicted?

Yes. We can predict ansatze that implement unitaries taken from partitioned
quantum circuits. These results can generalize to unseen partitioned
unitaries.

3. Are ansatze portable across gate sets?
Yes. When non-local parameters of gates are the same, there is a 1-to-1
mapping between ansatze. Otherwise there is a 1-to-few mapping.
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