

Inferring Program Structure with Parameterized Circuit Ansätze

Mathias Weiden, Ed Younis, Justin Kalloor, John Kubiatowicz, Costin Iancu

Optimization...

Parameterized Circuit Ansätze

- Fixed structure and variable function
- Maps parameters to quantum programs
- Consider parameterized single-qubit and fixed multi-qubit gates
- Ansätze are extremely expressive

Can we find minimal ansätze for programs?
 Can the ansatz that implements a program be predicted?

3. Are ansätze portable across gate sets?

Numerical Circuit Instantiation

Instantiation: Given a parameterized quantum circuit $C: \mathbb{R}^k \mapsto U(N)$ and a target unitary $V \in U(N)$, solve $\arg\min_{\theta} (I - V^{\dagger}C(\theta))_{(\text{error})}$

Numerical Instantiation Flows with BQSKit

- BQSKit supports specifying program functionality with
 - Unitary matrices U=e^{iH}
 - Hamiltonians (sums of Hermitian operators) Σσ[◦]_☉σ[◦]_☉σ[◦]
 - Loss functions to minimize
 - Parameters to a parameterized quantum circuit ansatz $\vec{\Theta} = [\Theta_1 \dots \Theta_k]$
- BQSKit's general instantiation workflow enables the optimization, synthesis, and transpilation of quantum circuits

Younis, Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation

Instantiation and Scaling

- Instantiation/solving for parameters has width/depth limits no matter the encoding used
 - Recent work (QFactor) shows how to scale instantiation to 12 qubits!
- Wide unitaries/circuits must be broken into manageable panels
 - Each panel is associated with a partitioned unitary
- This method can handle circuits with 1000s qubits

1. Can we find minimal ansätze for programs?

Program specified as Unitary

Lowest Gate Count Circuit Ansatz

Approach

- 1. Collect a large dataset of unitaries
 - Consider unitaries from partitioned circuits
 - Same algorithms of various widths
 - Different algorithms
- 2. Enumerate circuit ansätze up to a certain depth
- 3. Try instantiating each ansatz given each unitary

1. Can we find minimal ansätze for programs?

Enumerating Ansätze

- Consider a tree of possible circuit ansätze
- Assign an integer to each circuit ansatz
- Stop enumeration at a desired depth to keep finite output space
- Works because subcircuits from circuits are relatively simple

Instantiating each Ansatz

Patterns Occur when Algorithms Scale

Three ansätze account for 99% of ansätze in TFIM circuits of various widths

Patterns Occur When Algorithms are Composed

QFT 12 is contained in Shor 24: QFT and IQFT appear 16 times

Weiden, Improving Quantum Circuit Synthesis with Machine Learning

Patterns Appear in Circuit Ansätze

1. Can we find minimal ansätze for programs?

Yes, and **patterns** in structure can be observed for unitaries taken from **partitioned quantum circuits**.

- Partitioned unitaries:
 - Same circuit family but different widths share ansätze
 - Ansätze from different circuits capture containment relationships
- No does not work for random unitaries

2. Can the ansatz that implements a program be predicted?

A Set of Unitaries from Partitioned Circuit Panels

A Set of Circuit Ansätze

When Can You Expect to Make Predictions?

Example:

For these two datasets, where would you expect the next data point to fall?

Rules of Thumb:

- 1. Low dimensional patterns make data predictable
- 2. Low dimensional data are compressible

Patterns in Unitaries

- **Principal Component Analysis** reveals low dimensionality of unitaries of interest
- Implies learning patterns in unitaries is possible

Partitioned unitaries are taken from circuit panels

PCA quantifies how much we can compress these unitaries

Weiden, Improving Quantum Circuit Synthesis with Machine Learning

Using Patterns: Scaling Synthesis

- Synthesis = <u>circuit ansatz search</u> + instantiation
- Navigating the search tree must be done strategically
- There are many possible circuits to try

Wide unitaries/circuits must be broken into manageable pieces.

Seeded Synthesis

- Start synthesis closer to the solution circuit
- Alleviates the expensive tree search component of full bottom-up synthesis

Weiden, Improving Quantum Circuit Synthesis with Machine Learning

- QSeed: A seeded synthesis algorithm that uses machine learning to predict good seed circuits
- Paper: Improving Quantum Circuit Synthesis with Machine Learning

~				
Circ	uit Name	Training Widths	Test Widths	
	add	17, 65	41	
1	grover	-	10	
he	isenberg	4, 6, 7, 8, 16, 32, 64	5	
	hhl	8	6	
h	ubbard	4, 18, 50	8	
	mult	8, 32, 64	16	
	qae	11, 33, 101	65	
	qft	3, 4, 8, 16, 32	64	
	qml	4, 25, 60, 108	128	
	qpe	6, 10, 14	18	
	shor	16, 32	64	
	tfim	3, 4, 5, 6, 7, 8, 16, 32,	64	
	vqe	12, 14	18	
Table I: Split of circuits withheld from recommender training				
for testing. No Grover's algorithm circuits are used in training.				

Speedup: most synthesis runs require only one instantiation call

Solution quality: gate counts very closely match optimal implementation

require only one instantiation call

Solution quality: gate counts very closely match optimal implementation

require only one instantiation call

Solution quality: gate counts very closely match optimal implementation

Weiden, Improving Quantum Circuit Synthesis with Machine Learning

Generalizing to Unseen Circuits

Time savings and comparable solution quality maintained for unseen circuits

- Simple structures dominate the Grover 10 circuit
- Examples of these simple structures are scattered throughout other circuits

2. Can the ansatz that implements a program be predicted?

Yes. We can predict ansätze that implement **unitaries** taken from **partitioned quantum circuits**. These results can **generalize** to unseen partitioned unitaries.

3. Are ansätze portable across gate sets?

Ansätze Expressed with CX Gates Ansätze Expressed with CZ Gates

BQSKit Retargeting and Transpilation

- More generic than 1-1 rules (KAK, etc.)
- Works for gate sets with multiple entangling gates
- For a given ansatz transpilation must choose between O(g^{x+1}) ansätze in the new gate set g: 2-qubit gates in ansatz
 x: 2-qubit gates to implement arbitrary unitary
- Are ansätze/structures preserved when gate set changes?

BQSKit Transpiled Circuits are State of the Art

- Effective due to global transformations
- Produces circuits with an average of 12% fewer two-qubit gates
- Up to **51% reduction** of two-qubit gates
- Existing commercial compilers have many conversion limitations
- Portable and flexible (N-qubit gates, qudits)

Benchmark	CNOT Gates	Single-qubit Gates
adder9	98	64
adder63	1405	2885
mu110	163	107
mu160	11405	23666
qaoa5	42	27
qaoa10	85	40
hub4	180	155
hub8	2196	1513
hub12	8140	4932
grover5	48	80
tfim16	240	1200
tfim64	4032	20160
tfxy16	240	1200
tfxy64	4032	20160

- BQSKit framework and the default instantiator configured with four multistarts and 10⁻¹⁰ success threshold
- Retargetting converts CNOTs to CZ, XX,
 ZZ, √iSwap, and SYC
- Compared against Cirq, Qiskit, and Tket

Younis, Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation

Algorithms Have Gate Set Preferences

Can statements can we make about transpiled circuit ansätze?

Younis, Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation

Retargeting Ansätze

• Similarities between ansatz distributions appear to be linked to gate location in the **Weyl Chamber**

Various Gates in

the Weyl Chamber

Sycamor

е

Retargeting Ansätze

• Similarities between ansatz distributions appear to be linked to gate location in the **Weyl Chamber**

Various Gates in

the Weyl Chamber

Sycamor

е

3. Are ansätze portable across gate sets?

Yes. When non-local parameters of gates are the same, there is a 1-to-1 mapping between ansätze. Otherwise there is a 1-to-few mapping.

Conclusions

1. Can we find minimal ansätze for programs?

Yes, and patterns in structure can be observed for unitaries taken from partitioned quantum circuits.

2. Can the ansatz that implements a program be predicted? Yes. We can predict ansätze that implement unitaries taken from partitioned quantum circuits. These results can generalize to unseen partitioned unitaries.

3. Are ansätze portable across gate sets?

Yes. When **non-local** parameters of gates are the same, there is a **1-to-1** mapping between ansätze. Otherwise there is a **1-to-few** mapping.

Thank You!

- 1. Mathias Weiden, Ed Younis, Justin Kalloor, John Kubiatowicz, Costin Iancu, "*Improving Quantum Circuit Synthesis with Machine Learning*", Accepted, 2023 (QCE)
- 2. Alon Kukliansky, Ed Younis, Lukasz Cincio, Costin lancu, "**QFactor: A Domain-Specific Optimizer for Quantum Circuit Instantiation** ", Accepted, 2023 (QCE)
- 3. E. Younis, C. lancu, "*Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation*," in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2022, pp. 465-475.
- 4. E. Younis, K. Sen, K. Yelick, C. lancu, "*QFast: Conflating Search and Numerical Optimization for Scalable Quantum Circuit Synthesis*," in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2021, pp. 232-243. (*Best Paper Award*)
- M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, C. lancu, "Towards Optimal Topology Aware Quantum Circuit Synthesis," in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2020, pp. 223-234. (Best Paper Award)
- X.C. Wu, M. G. Davis, F. Chong, C. Iancu, "*Reoptimization of Quantum Circuits via Hierarchical Synthesis*," in 2021 IEEE International Conference on Rebooting Computing (ICRC), IEEE, 2021, pp. 35-46.

BesKit

bqskit.lbl.gov