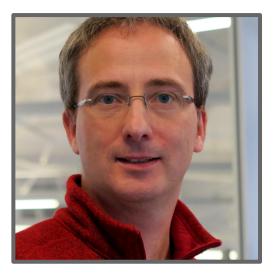
LinguaQuanta: Initial Results on a Quantum Transpiler

Scott Wesley Dalhousie University

Outline of Talk

1. Motivations and Background


2. Correctness: Categorical Specifications

3. Translations: Some Decompositions

4. Challenges: Ancilla Management

Acknowledgements Colleagues and Collaborators

Key Collaborators

Dr. Peter Selinger (Dalhousie University)

Provided early consultation of semantics.

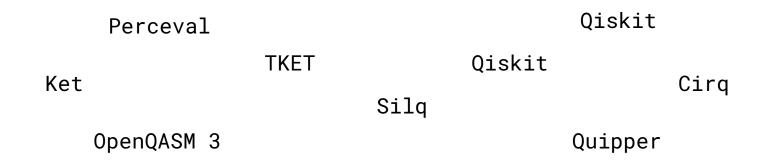
Xiaoning Bian (Dalhousie University)

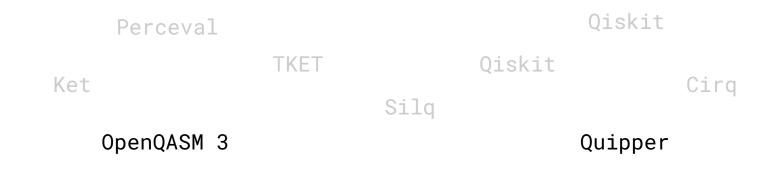
Initiated the LinguaQuanta project.

Additional Project Support

Dr. Neil J. Ross (Dalhousie University)

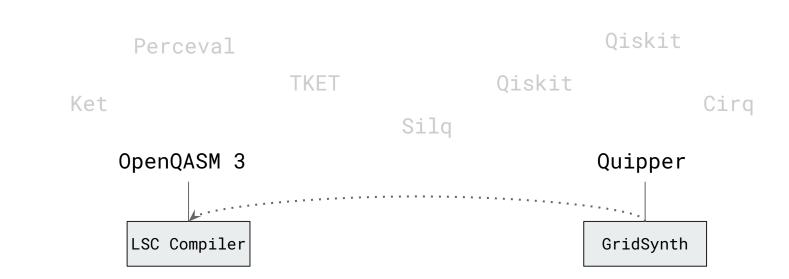
Provided feedback as my PhD supervisor.

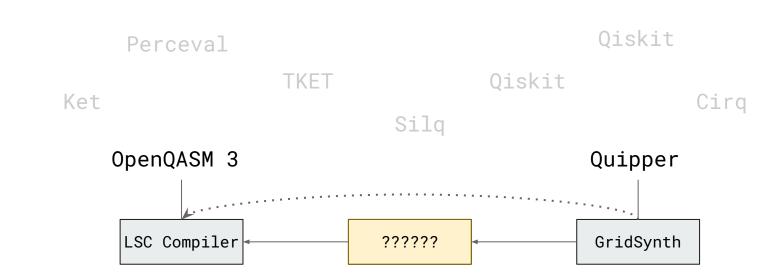

Dr. Simon Tsang (Peraton Labs)

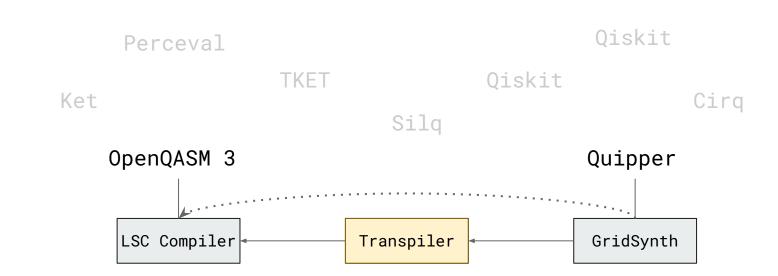

Provided design feedback as a end-user.

A Word From Our Sponsors

This research was sponsored in part by the **United States Defense Advanced Research Projects Agency** (DARPA) under the **Quantum Benchmarking program, contract #HR001122C0066**.


Objectives and Overview

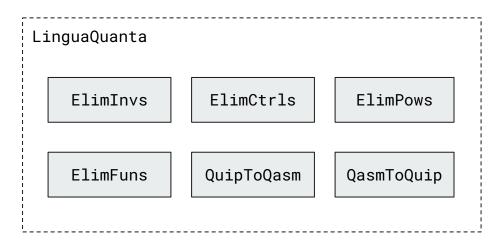




Categorical Specification

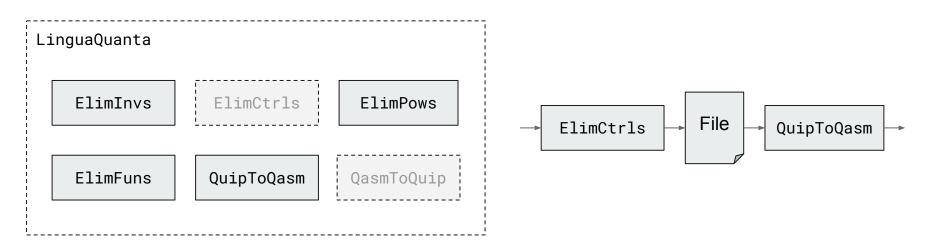
How Should an Ideal Transpiler Behave?

Implications of the UNIX philosophy:

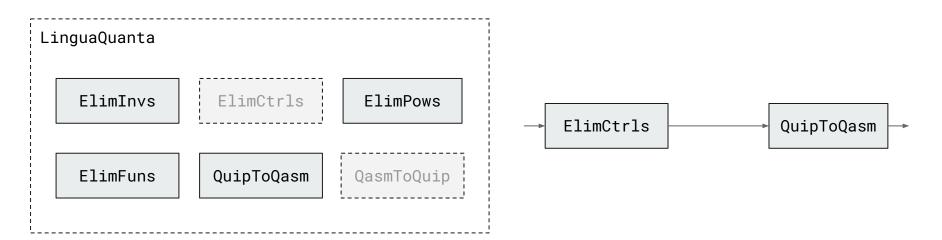

1. 2.

3.

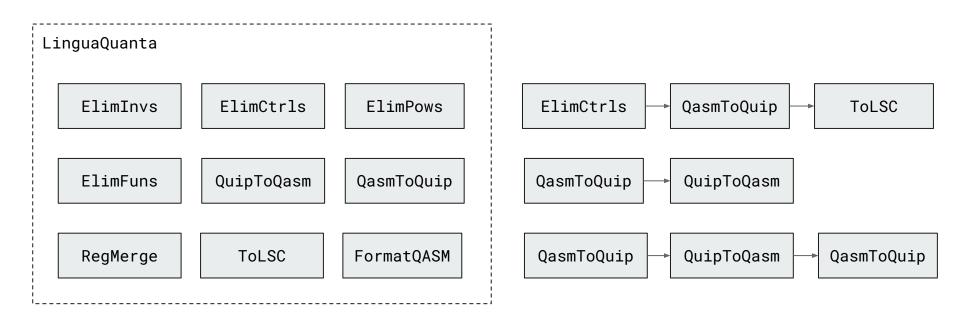
LinguaQuanta	


Implications of the UNIX philosophy:

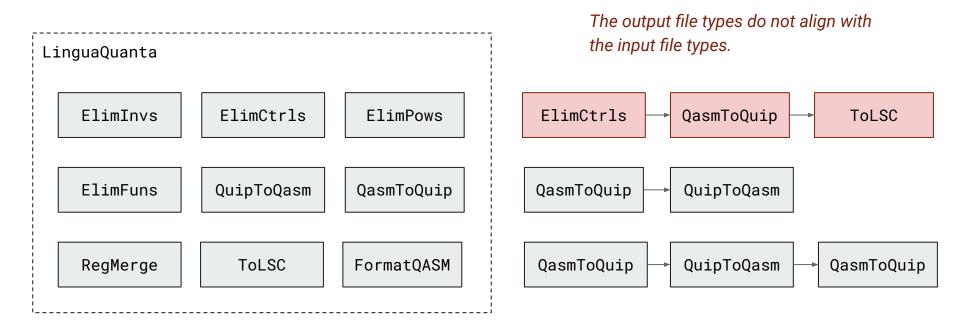
- 1. Write programs that do one thing and do it well.
- 2.
- 3.

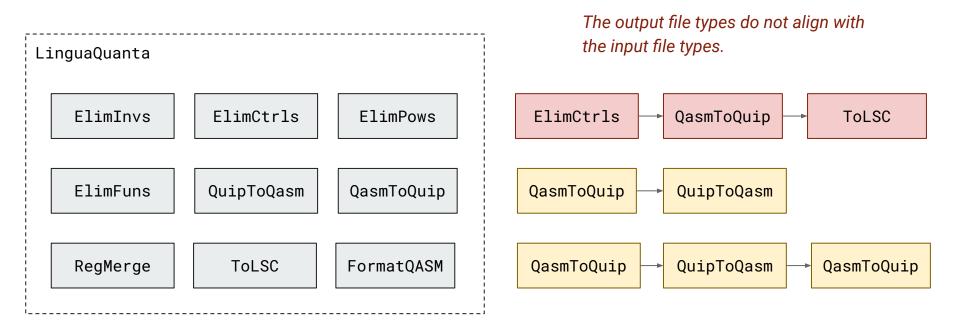

Implications of the UNIX philosophy:

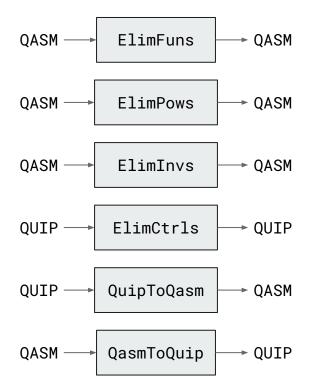
- 1. Write programs that do one thing and do it well.
- 2. Write programs that work well together.
- 3.

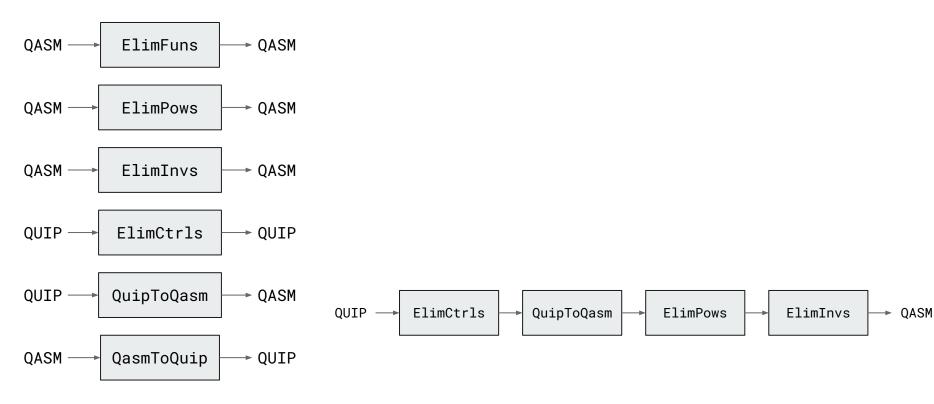


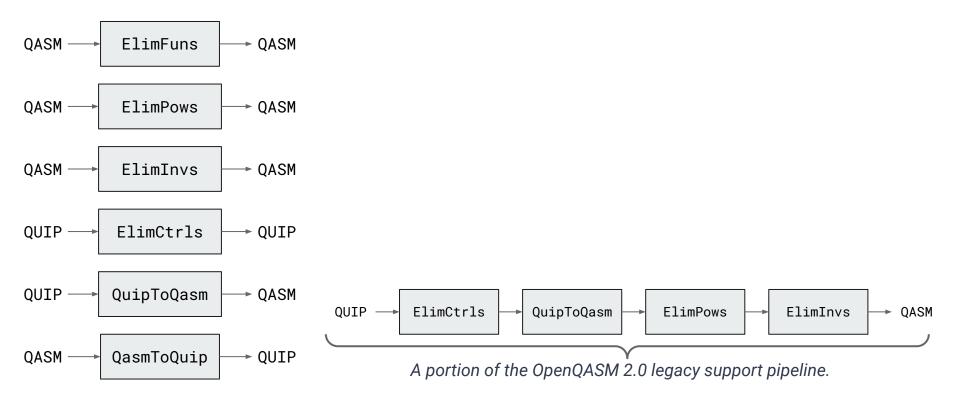
Implications of the UNIX philosophy:

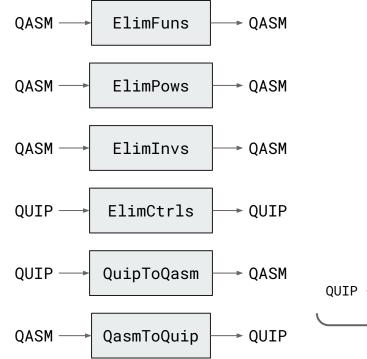

- 1. Write programs that do one thing and do it well.
- 2. Write programs that work well together.
- 3. Write programs that handle text streams.


Problem: Many Potential Pipelines

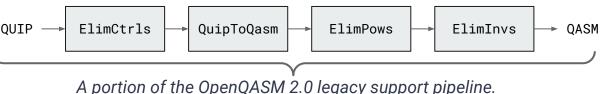

Problem: Many Potential Pipelines




Problem: Many Potential Pipelines



What should we expect from a round translation in LinguaQuanta?



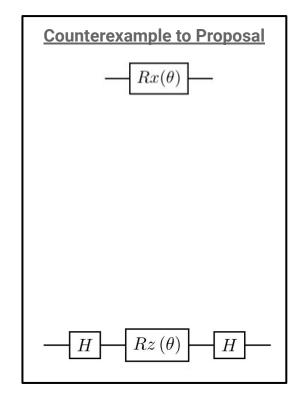
Now our pipelines are **type safe** in some very coarse grained sense. However, we would like to have a more fine-grained **notion of correctness**. Ideally, we would be able to **validate these specifications algorithmically**.

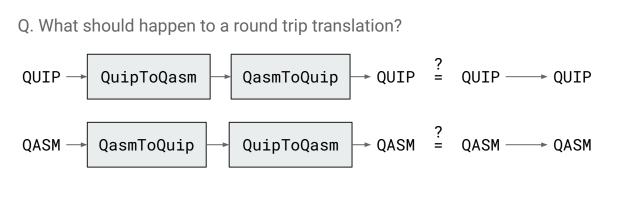
The rest of this section will refine these specifications to a satisfactory level, and then suggest a **direction for future work**.

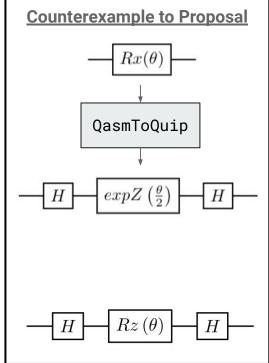
Q. What should happen to a round trip translation?

 $QUIP \rightarrow QuipToQasm \rightarrow QasmToQuip \rightarrow QUIP =$ $QASM \rightarrow QasmToQuip \rightarrow QuipToQasm \rightarrow QASM =$

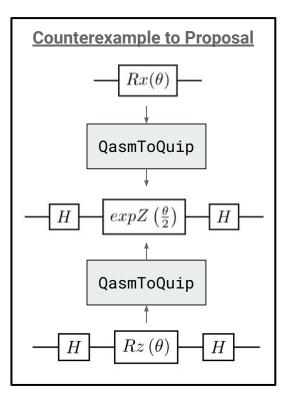
Q. What should happen to a round trip translation?


$$QUIP \rightarrow QuipToQasm \rightarrow QasmToQuip \rightarrow QUIP \stackrel{?}{=} QUIP \rightarrow QUIP$$

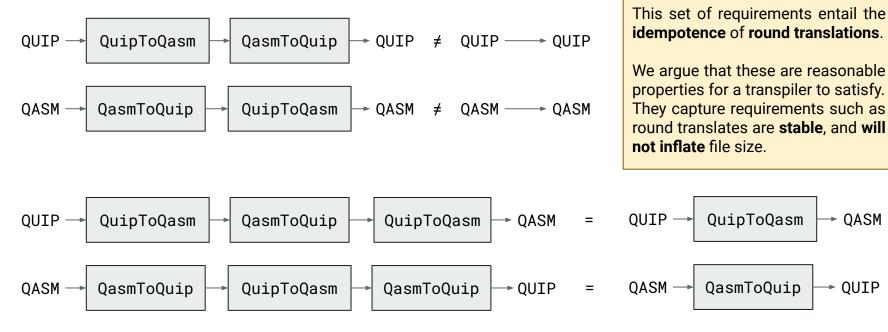

$$QASM \rightarrow QasmToQuip \rightarrow QuipToQasm \rightarrow QASM \stackrel{?}{=} QASM \rightarrow QASM$$


Q. What should happen to a round trip translation?

$$QUIP \rightarrow QuipToQasm \rightarrow QasmToQuip \rightarrow QUIP \stackrel{?}{=} QUIP \rightarrow QUIP$$


$$QASM \rightarrow QasmToQuip \rightarrow QuipToQasm \rightarrow QASM \stackrel{?}{=} QASM \rightarrow QASM$$

Q. What should happen to a round trip translation? $QUIP \rightarrow QuipToQasm \rightarrow QasmToQuip \rightarrow QUIP \neq QUIP \rightarrow QUIP$ $QASM \rightarrow QasmToQuip \rightarrow QuipToQasm \rightarrow QASM \neq QASM \rightarrow QASM$


Q. What should happen to a round trip translation?

 $QUIP \rightarrow QuipToQasm \rightarrow QasmToQuip \rightarrow QUIP \neq QUIP \rightarrow QUIP$ $QASM \rightarrow QasmToQuip \rightarrow QuipToQasm \rightarrow QASM \neq QASM \rightarrow QASM$

Q. What should happen to a round trip translation?

QuipToQasm QasmToQuip → QUIP ≠ QUIP ----→ QUIP QUIP -QASM ----QasmToQuip QuipToQasm → QASM ≠ QASM →→ QASM QuipToQasm QuipToQasm → OASM QUIP ----QuipToQasm → QASM OUIP QasmToQuip = QASM -QasmToQuip → QUIP QasmToQuip → QUIP QasmToQuip QuipToQasm =

Q. What should happen to a round trip translation?

Step 2: A Closer Look at Translations

Q: Is there more structure to a transpilation stage?

Step 2: A Closer Look at Translations

Q: Is there more structure to a transpilation stage?

$$L1 \longrightarrow Tool \longrightarrow L2$$

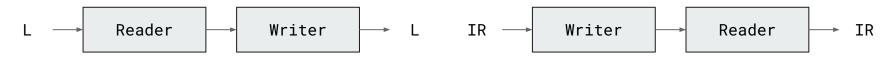
We know from compiler design that **operating directly on source text is a bad design pattern**... at the very least, we should have a "**reader**" (lexer + parser) and a "**writer**" (code generation phase).

L1
$$\longrightarrow$$
 Reader \longrightarrow IR1 IR1 \longrightarrow Transformer \longrightarrow IR2 IR2 \longrightarrow Writer \longrightarrow L2

Step 2: A Closer Look at Translations

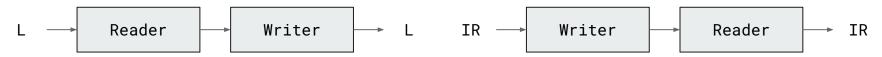
Q: Is there more structure to a transpilation stage?

We know from compiler design that **operating directly on source text is a bad design pattern**... at the very least, we should have a "**reader**" (lexer + parser) and a "**writer**" (code generation phase).


L1
$$\longrightarrow$$
 Reader \longrightarrow IR1 IR1 \longrightarrow Transformer \longrightarrow IR2 IR2 \longrightarrow Writer \longrightarrow L2

This yields the following definition:

L1
$$\longrightarrow$$
 Tool \longrightarrow L2 := L1 \longrightarrow Reader \longrightarrow Transformer \longrightarrow Writer \longrightarrow L2


Step 3: Read-What-You-Write (Retracts)

Q: How should readers and writers interact?

Step 3: Read-What-You-Write (Retracts)

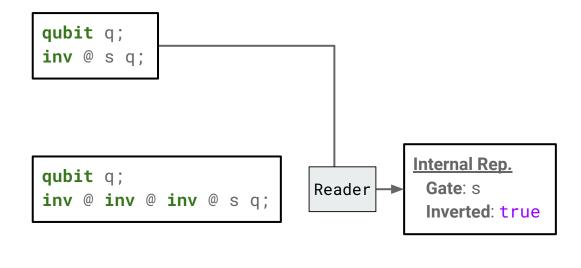

Q: How should readers and writers interact?

It is possible that **many syntactic structures** map to the same internal representation (IR). For example, pairs of inverse modifiers cancel out in OpenQASM 3. However, each IR statement can have a **canonical representation**.

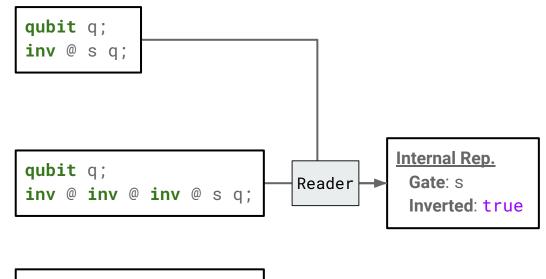
Step 3: Read-What-You-Write (Retracts)

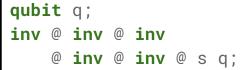
Q: How should readers and writers interact?

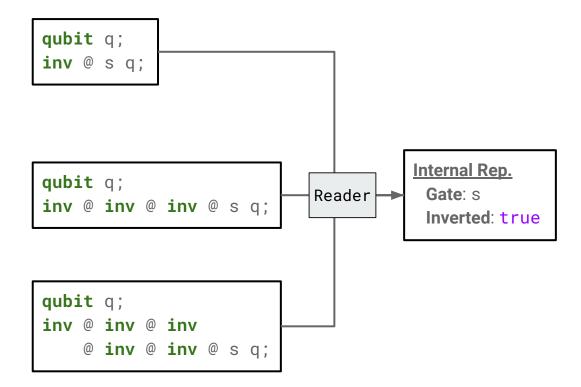
inverse modifiers cancel out in OpenQASM 3. However, each IR statement can have a **canonical representation**.

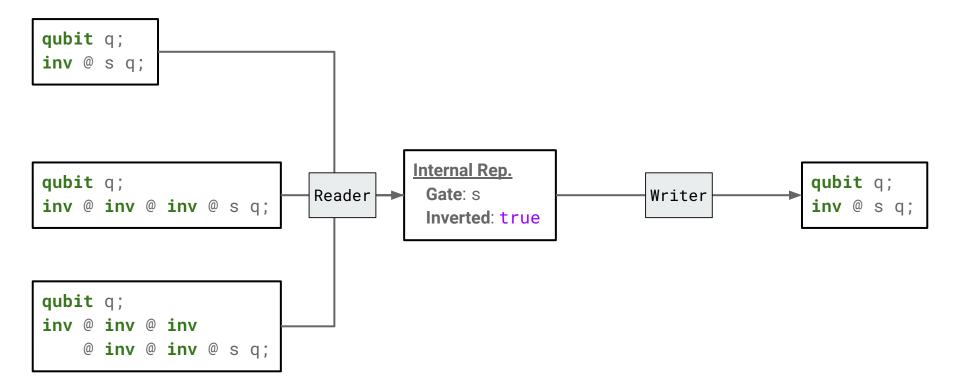


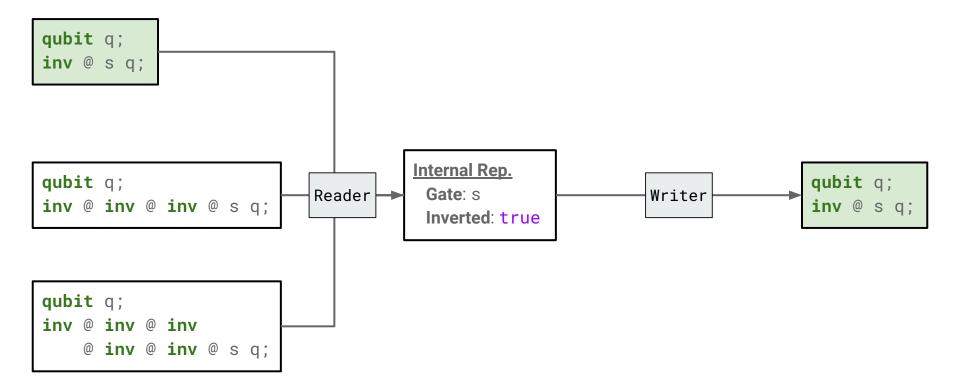
Categorically, this says that the reader should provide a **retraction** (left-inverse) for the writer.


qubit q; **inv** @ s q;


qubit q; inv @ inv @ inv @ s q;


qubit q; inv @ inv @ inv @ inv @ inv @ s q;





Some Decompositions

Rewriting for a Quantum Transpiler?

OpenQASM and Quipper Lack Feature Parity

Notation	Matrix	QUIP	QASM3	QASM2
	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	~	~	~
Y	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	1	~	~
_ <u>Z</u>	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	~	4	4
	$rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	~	4	~
S	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	~	~	~
S^{\dagger}	$\begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$	~	Ý	~
T	$\begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix}$	~	~	*
T	$\begin{bmatrix} 1 & 0 \\ 0 & \omega^{\gamma} \end{bmatrix}$	1	1	~
	$\tfrac{1}{2} \begin{bmatrix} 1+i \ 1-i \\ 1-i \ 1+i \end{bmatrix}$	~	4	×
iX	$\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$	~	×	×
	$\begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$	~	×	×
E	$\tfrac{1}{2} \begin{bmatrix} -1+i & 1+i \\ -1+i & -1-i \end{bmatrix}$	~	×	×

Notation	Matrix	QUIP	QASM3	QASM2
—	$I\oplus X$	~	1	4
	$I\oplus Y$	~	1	~
\pm	$I\oplus Z$	*	×	×
	$I\oplus H$	~	~	~
	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	×	~	×
W	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	4	×	×
	$I\oplus I\oplus X$	1	×	~
Å	$I \oplus SWAP$	1	Ý	×

Notation	Matrix	QUIP	QASM3	QASM2
$expZ(\theta)$	$e^{-iZ\theta}$	*	×	×
$R_x(\theta)$	$e^{-i N (\theta/2)}$	×	×	~
$R_{g}(\theta)$	$e^{-iY(\theta/2)}$	×	~	~
$R_z(\theta)$	$e^{-iZ\{\theta/2\}}$	×	~	~
$P(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	1	~	×
$U(\theta, \phi, \lambda)$	See Appx. A.	×	4	~
$U3(\theta, \phi, \lambda)$	See Appx. A.	×	1	~
$U2(\phi, \lambda)$	See Appx. A.	×	\checkmark	~
$-U1(\lambda)$	See Appx. A.	×	4	~

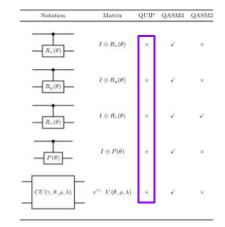
Notation	Matrix	QUIP	QASM3	QASM2
$R_x(\theta)$	$I\oplus R_x(\theta)$	×	1	×
R _μ (θ)	$I\oplus R_y(\theta)$	×	×	×
$R_z(\theta)$	$I\oplus R_s(\theta)$	×	1	×
P(θ)	$I \oplus P(\theta)$	×	~	×
$\fbox{CU}(\gamma,\theta,\rho,\lambda)$	$e^{i\gamma} \cdot U(\theta, \rho, \lambda)$	×	¥	×

OpenQASM and Quipper Lack Feature Parity

Notation	Matrix	QUIP	QASM3	QASM2
	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	~	~	~
Y	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	~	1	~
_ <u>Z</u> _	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	~	4	~
H	$rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	~	~	~
	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	~	~	~
S [†]	$\begin{bmatrix} 1 & 0\\ 0 & -i \end{bmatrix}$	×	Ý	~
	$\begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix}$	~	~	*
	$\begin{bmatrix} 1 & 0 \\ 0 & \omega^{\intercal} \end{bmatrix}$	1	1	~
SX.	$\frac{1}{2} \begin{bmatrix} 1+i \ 1-i \\ 1-i \ 1+i \end{bmatrix}$	~	~	×
iX	$\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$	~	×	×
- <u>-</u>	$\begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$	~	×	×
E	$\tfrac{1}{2} \begin{bmatrix} -1+i & 1+i \\ -1+i & -1-i \end{bmatrix}$	~	×	×

Notation	Matrix	QUIP	QASM3	QASM2
—	$I\oplus X$	~	1	1
	$I\oplus Y$	~	×	4
Ŧ	$I\oplus Z$	*	×	×
<u> </u>	$I\oplus H$	~	4	1
	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	4	~	×
W	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	~	×	×
	$I\oplus I\oplus X$	¥	Ý	~
Ŕ	$I \oplus SW\!AP$	~	4	×

Notation	Matrix	QUIP	QASM3	QASM2
$expZ(\theta)$	$e^{-iZ\theta}$	*	×	×
$R_s(\theta)$	$e^{-i \bar{N} \left(\theta/2\right)}$	×	×	~
$R_{g}(\theta)$	$e^{-iY(\theta/2)}$	×	~	~
$R_z(\theta)$	$e^{-iZ\{\theta/2\}}$	×	~	~
$-P(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	1	~	×
$U(\theta, \phi, \lambda)$	See Appx. A.	×	4	~
$U3(\theta, \phi, \lambda)$	See Appx. A.	×	1	~
$U2(\phi, \lambda)$	See Appx. A.	×	~	~
$-U1(\lambda)$	See Appx. A.	×	4	~


Notation	Matrix	QUIP	QASM3	QASM2
R_x(θ)	$I\oplus R_x(heta)$	×	~	×
R _y (θ)	$I\oplus R_y(\theta)$	×	×	×
$R_{z}(\theta)$	$I\oplus R_z(\theta)$	×	1	×
- P(θ)	$I \oplus P(\theta)$	×	4	×
$CU(\gamma, \theta, \rho, \lambda)$	$e^{i\gamma}\cdot U(\theta,\rho,\lambda)$	×	~	×

OpenQASM and Quipper Lack Feature Parity

Notation	Matrix	QUIP	QASM3	QASM2
	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	~	~	~
Y	$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$	~	1	~
_ <u>Z</u> _	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	~	4	~
H	$rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	~	~	~
	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	~	~	~
S [†]	$\begin{bmatrix} 1 & 0\\ 0 & -i \end{bmatrix}$	×	Ý	~
	$\begin{bmatrix} 1 & 0 \\ 0 & \omega \end{bmatrix}$	~	~	*
	$\begin{bmatrix} 1 & 0 \\ 0 & \omega^{7} \end{bmatrix}$	1	1	~
SX -	$rac{1}{2} \begin{bmatrix} 1+i \ 1-i \\ 1-i \ 1+i \end{bmatrix}$	~	~	×
iX	$\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$	~	×	×
- <u>-</u>	$\begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$	~	×	×
	$\frac{1}{2} \begin{bmatrix} -1+i & 1+i \\ -1+i & -1-i \end{bmatrix}$	~	×	×

Notation	Matrix	QUIP	QASM3	QASM2
\rightarrow	$I\oplus X$	~	1	4
	$I\oplus Y$	~	1	~
\pm	$I\oplus Z$	¥	Ý	×
	$I\oplus H$	~	~	~
	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	×	~	×
W	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{1}} & 0 \\ 0 & \frac{\sqrt{2}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	~	×	×
—	$I\oplus I\oplus X$	4	Ý	×
İ	$I\oplus SWAP$	¥	¥	×

Notation	Matrix	QUIP	QASM3	QASM2
$expZ(\theta)$	$e^{-iZ\theta}$	*	×	×
$R_{\epsilon}(\theta)$	$e^{-iX\left(\theta/2\right)}$	\times	V	×
$R_{g}(\theta)$	$e^{-iY(\theta/2)}$	×:	~	~
$-R_z(\theta)$	$e^{-iZ\{\theta/2\}}$	*	×	~
$P(\theta)$	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}$	1	~	×
$- U(\theta, \phi, \lambda) -$	See Appx. A.	×	4	4
$-U3(\theta, \phi, \lambda)$	See Appx. A.	×	~	¥
$U2(\phi, \lambda)$	See Appx. A.	: . x:	~	×.
U1(λ)	See Apps. A.	×	~	v

Specific Decompositions for Specific Gates

Named gates without parameters typically require one-off translations. A part of this project was to bring together a list of these translations, in a "Rewriting Compendium", so to speak.

Specific Decompositions for Specific Gates

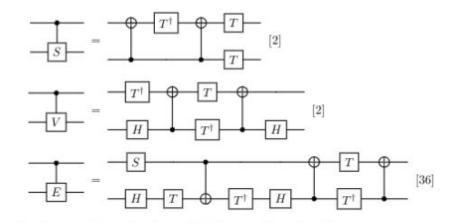
Named gates without parameters typically require one-off translations. A part of this project was to bring together a list of these translations, in a "Rewriting Compendium", so to speak.

Some statistics about this compendium:

- 1. Number of References: 9
- 2. Number of Rewrite Rules: 51
- 3. Number of Non-Elementary Relations: 41

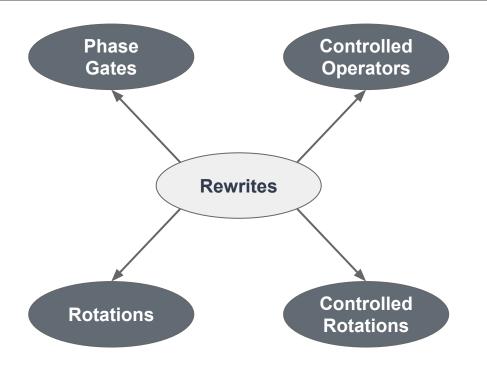
This compendium is nowhere near comprehensive, but we hope for it to be a **start for compiler design**.

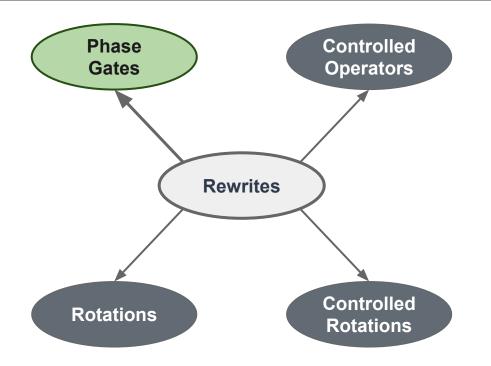
Specific Decompositions for Specific Gates

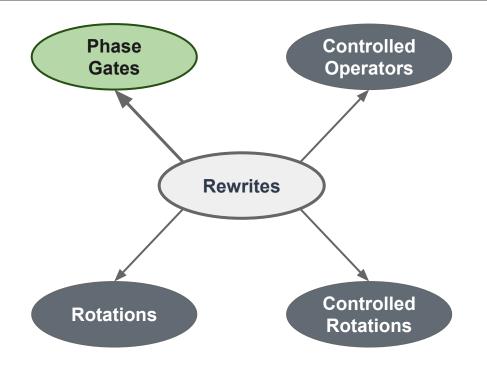

Named gates without parameters typically require one-off translations. A part of this project was to bring together a list of these translations, in a "Rewriting Compendium", so to speak.

Some statistics about this compendium:

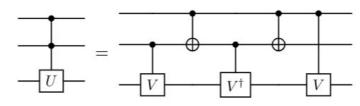
- 1. Number of References: 9
- 2. Number of Rewrite Rules: 51
- 3. Number of Non-Elementary Relations: 41

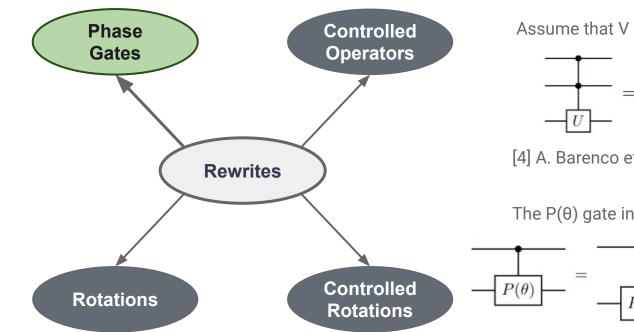

This compendium is nowhere near comprehensive, but we hope for it to be a **start for compiler design**.


Some Example Rewrite Rules:



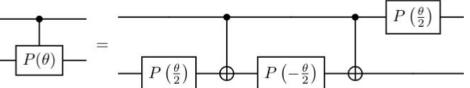
[2] M. Amy, D. Maslov, M. Mosca, M. Roetteler 2013.[36]

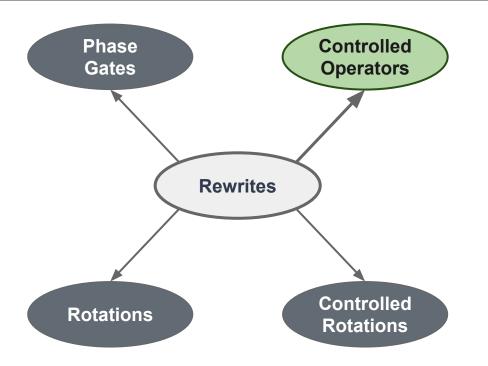

https://www.mathstat.dal.ca/~selinger/quipper/doc/

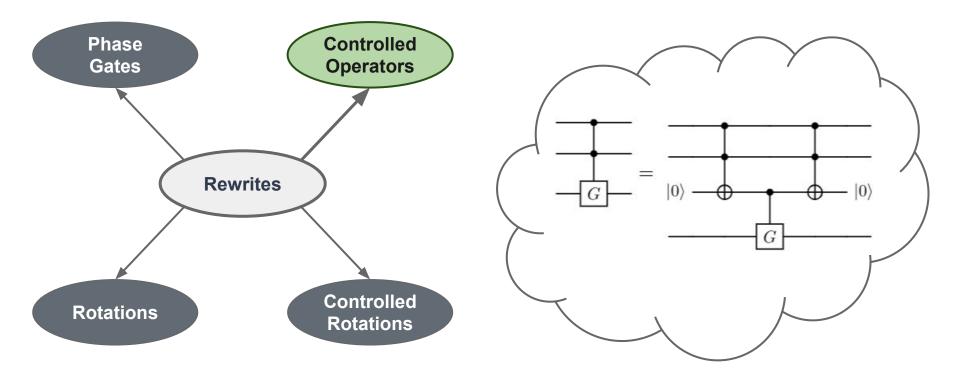


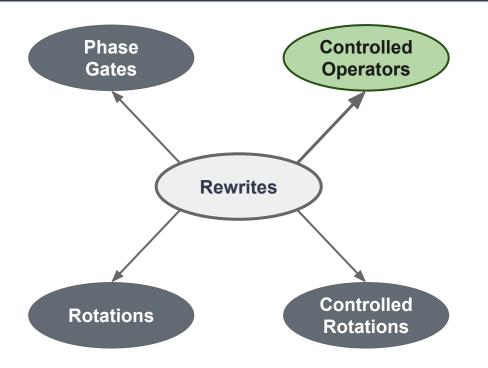

Assume that V is a unitary and $U = V^2$.

[4] A. Barenco et al., 1995.

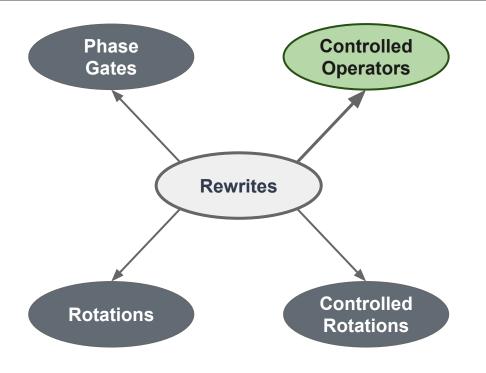



Assume that V is a unitary and U = V^2 .

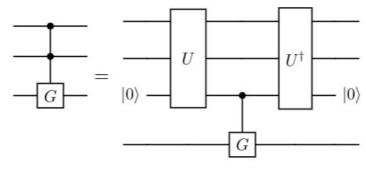


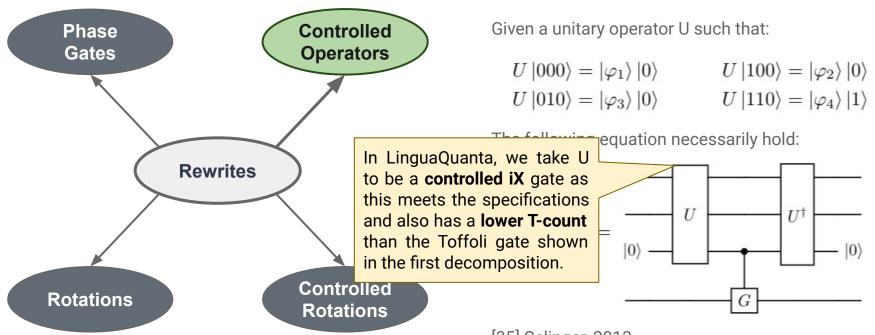

[4] A. Barenco et al., 1995.

The $P(\theta)$ gate in OpenQASM is a controlled phase.

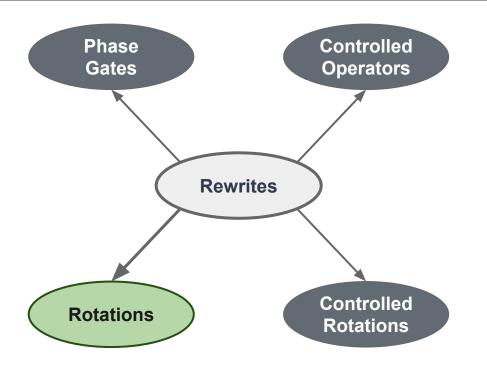


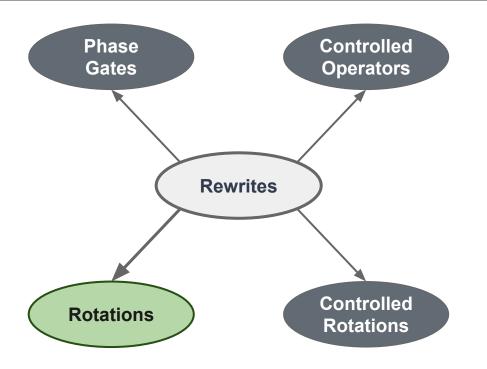
Given a unitary operator U such that:


$U\left 000\right\rangle = \left \varphi_{1}\right\rangle\left 0\right\rangle$	$U\left 100\right\rangle = \left \varphi_{2}\right\rangle\left 0\right\rangle$
$U \ket{010} = \ket{arphi_3} \ket{0}$	$U\left 110\right\rangle = \left \varphi_{4}\right\rangle\left 1\right\rangle$

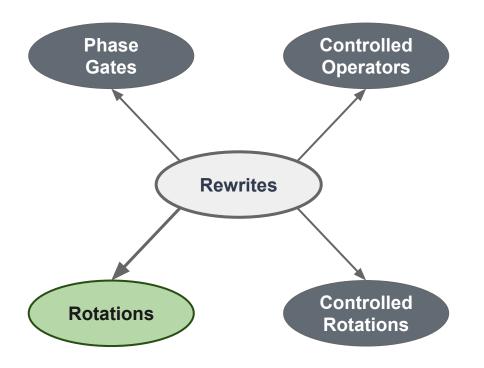

Given a unitary operator U such that:

$U\left 000\right\rangle = \left \varphi_{1}\right\rangle\left 0\right\rangle$	$U\left 100\right\rangle = \left \varphi_{2}\right\rangle\left 0\right\rangle$
$U\left 010\right\rangle = \left \varphi_{3}\right\rangle\left 0\right\rangle$	$U\left 110\right\rangle = \left \varphi_{4}\right\rangle\left 1\right\rangle$

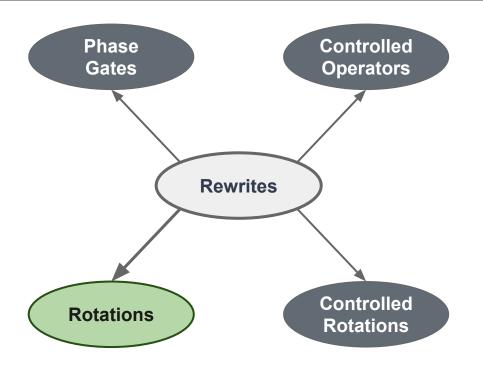

The following equation necessarily hold:



[35] Selinger, 2013.


[35] Selinger, 2013.

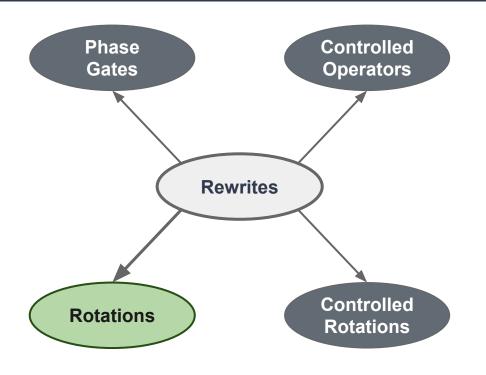
Recall the following fact about matrix exponentials.


 $e^{U^{\dagger}VU} = U^{\dagger}e^{V}U$

Recall the following fact about matrix exponentials.

 $e^{U^{\dagger}VU} = U^{\dagger}e^{V}U$

Standard rotations are also matrix exponentials. $R_A(\theta) = e^{iA\theta} \quad R_B(\theta) = e^{iB\theta}$


Recall the following fact about matrix exponentials.

 $e^{U^{\dagger}VU} = U^{\dagger}e^{V}U$

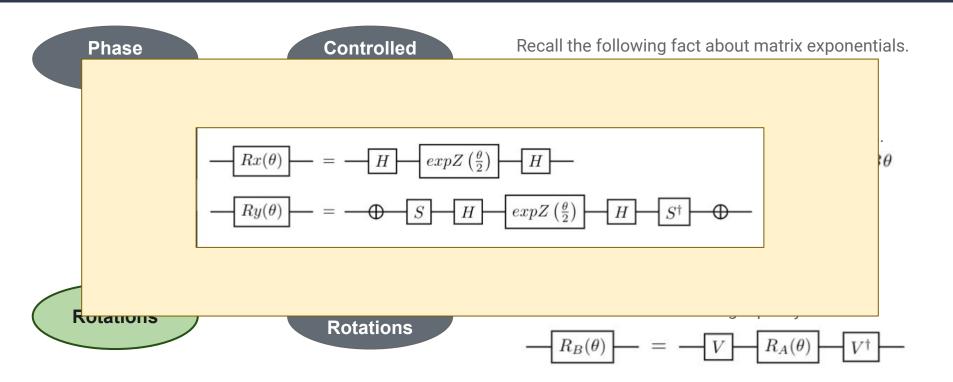
Standard rotations are also matrix exponentials. $R_A(heta) = e^{iA heta} \quad R_B(heta) = e^{iB heta}$

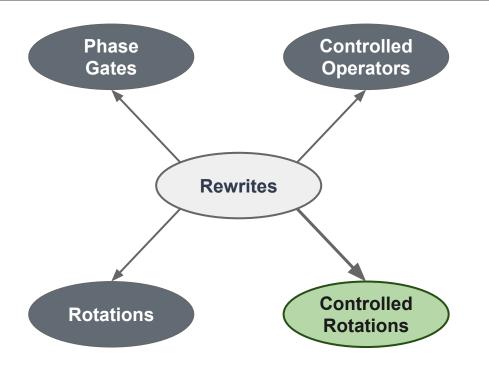
Let's further assume the following relation.

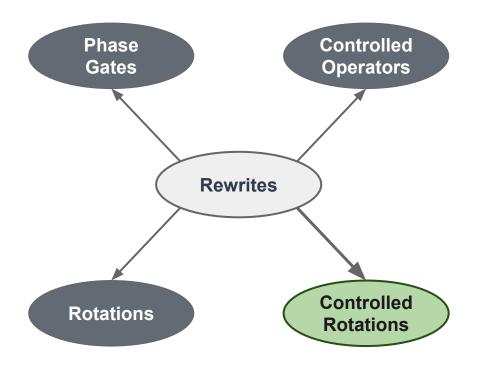
 $B = V^{\dagger}AV$

Recall the following fact about matrix exponentials.

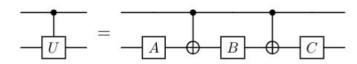
 $e^{U^{\dagger}VU} = U^{\dagger}e^{V}U$

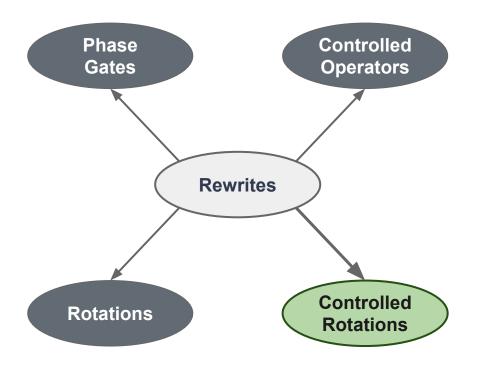

Standard rotations are also matrix exponentials. $R_A(heta) = e^{iA heta} \quad R_B(heta) = e^{iB heta}$

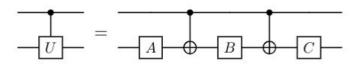

Let's further assume the following relation.


 $B = V^{\dagger}AV$

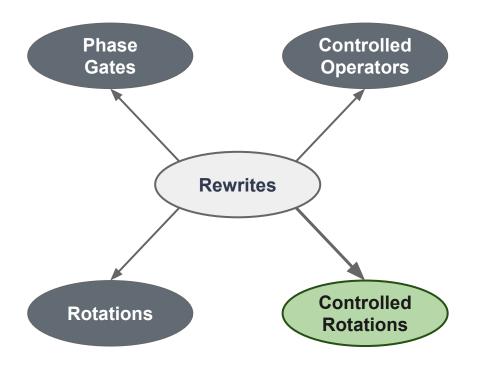
Then we obtain the following equality.


$$R_B(\theta) = V R_A(\theta) V^{\dagger}$$

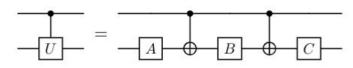



Assume that U = CXBXA and CBA = I.

[4] A. Barenco et al., 1995.

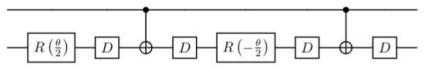


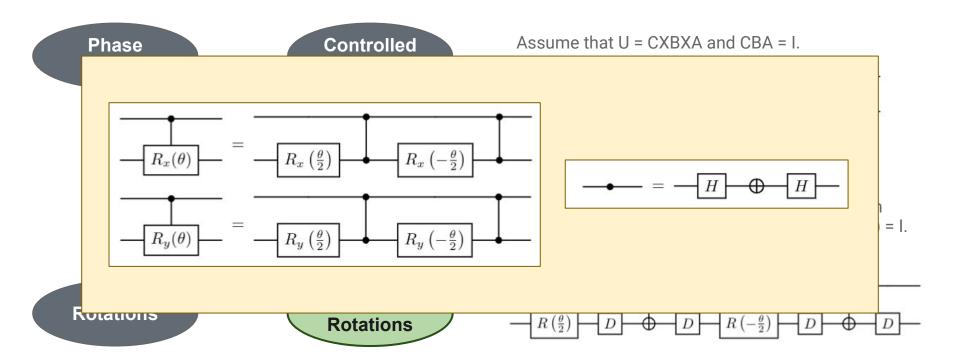
Assume that U = CXBXA and CBA = I.



[4] A. Barenco et al., 1995.

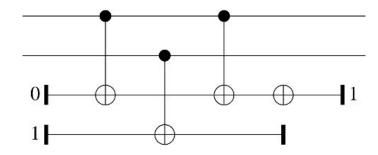
Assume that D is self-inverse and R is a rotation satisfying $(DXD)R(\theta)(DXD) = R(-\theta)$ and $R(\theta)R(-\theta) = I$.

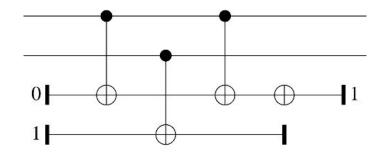

Assume that U = CXBXA and CBA = I.


[4] A. Barenco et al., 1995.

Assume that D is self-inverse and R is a rotation satisfying $(DXD)R(\theta)(DXD) = R(-\theta)$ and $R(\theta)R(-\theta) = I$.

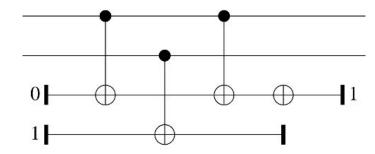
The following is a decomposition of $C(R(\theta))$:


Wider Classes of Gate Decompositions


Ancilla Management

Translation from Quipper to OpenQASM

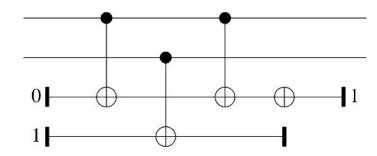
Quipper circuits allow for ancilla qubits.


Quipper circuits allow for **ancilla qubits**.

Ancillas are managed using the **following primitives**.

Term Init Discard

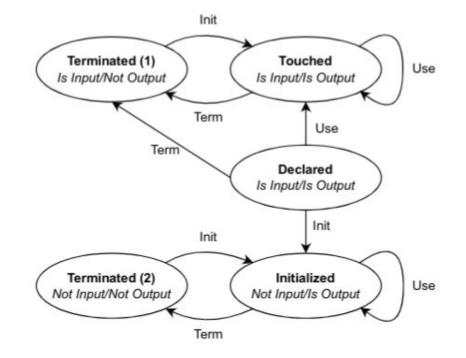
Quipper circuits allow for ancilla qubits.



Ancillas are managed using the **following primitives**.

Term Init Discard

Conversely, OpenQASM allocates qubits up front.


Quipper circuits allow for ancilla qubits.

Ancillas are managed using the **following primitives**.

Term Init Discard

Conversely, OpenQASM allocates qubits up front.

Other Features and Ongoing Work

An Advertisement for Our Upcoming Paper

See the full paper for...

- 1. Design features that **reduce the distance** between a round translation and the identity morphism.
- 2. Emulating Quipper **type conversions** in OpenQASM 3.
- 3. Emulating the **OpenQASM measurement semantics** in Quipper.
- 4. Early progress on ensuring the **correctness of pre-processing** components (control inlining).
- 5. A **fully-worked example** based around phase estimation.
- 6. A discussion surrounding the **compositionality of parameterized gates**, and a proposal for abstract types.
- 7. Translating **Quipper ancillas** to OpenQASM.

* The full paper if a work-in-progress, but a draft should be available in the near future. Please reach out to me!

Limitations and Future Work

A Roadmap for LinguaQuanta

A List of Key Limitations

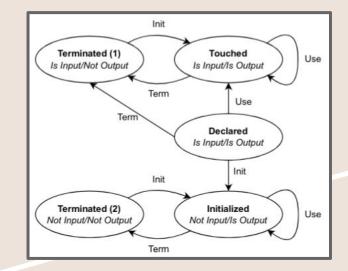
Ongoing Development:

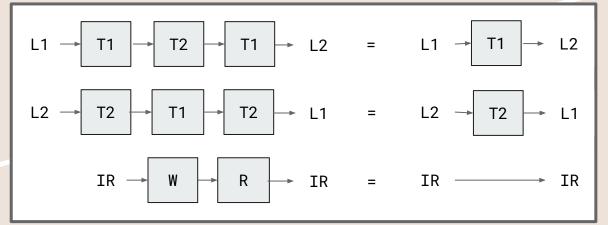
- 1. Support for type conversion in Quipper.
- 2. Support for OpenQASM's user-defined gates.
- 3. Support for opaque gates.
- 4. Basic support for classical control.
- 5. Constant propagation for OpenQASM 3.
- 6. Bounded loop unwinding for OpenQASM 3.

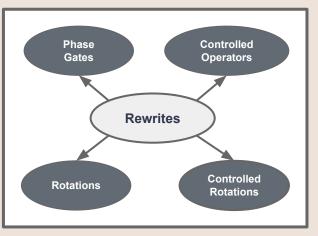
Out-of-scope Features:

- 1. No-control flags in Quipper.
- 2. Dynamic lifting in Quipper.
- 3. Generalized controls in Quipper
- 4. OpenPulse and physical qubits in OpenQASM 3.
- 5. Floats and dynamic arrays in OpenQASM 3.

Future Research Directions


- 1. Categorical semantics for preprocessing in a transpilation pipeline.
- 2. Formal verification of LinguaQuanta and a general methodology.
- 3. Whitebox fuzzing of pipeline software through pipeline rewriting.
- 4. Empirical evaluations of LinguaQuanta (performance and conformance).


Questions?


Want to learn more? Contact: scott.wesley@dal.ca

Want to try LinguaQuanta? Visit: <u>github.com/onestruggler/qasm-quipper</u>

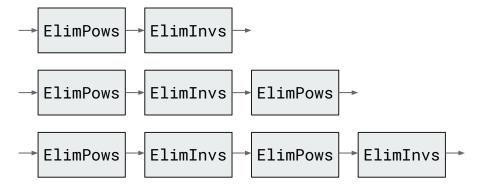
A draft of the paper will be available through the IWQC website.

Appendix A

Sub-Languages, Lattices, and Pipelines

There are many **preprocessing** tools in LinguaQuanta.

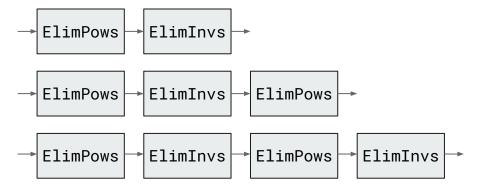
ElimFuns


ElimPows

ElimInvs

There are many **preprocessing** tools in LinguaQuanta.

One could expect these pipelines to be **equivalent**.


There are many **preprocessing** tools in LinguaQuanta.

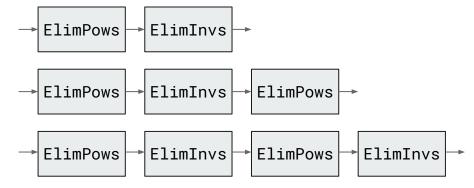
ElimFuns

ElimPows

ElimInvs

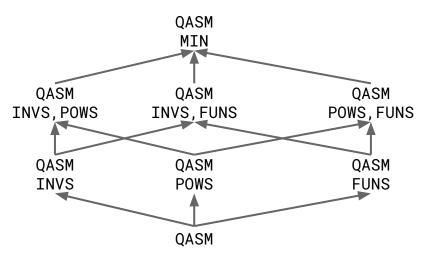
One could expect these pipelines to be **equivalent**.

Though **commutativity** seems **too strong** a property.


There are many **preprocessing** tools in LinguaQuanta.

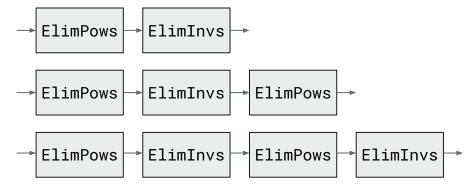
ElimFuns

ElimPows

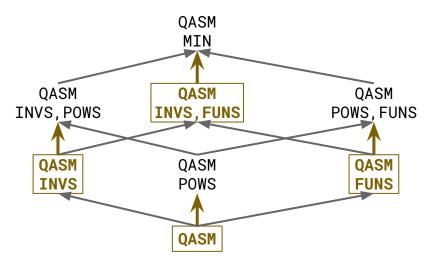

ElimInvs

One could expect these pipelines to be **equivalent**.

Though **commutativity** seems **too strong** a property.

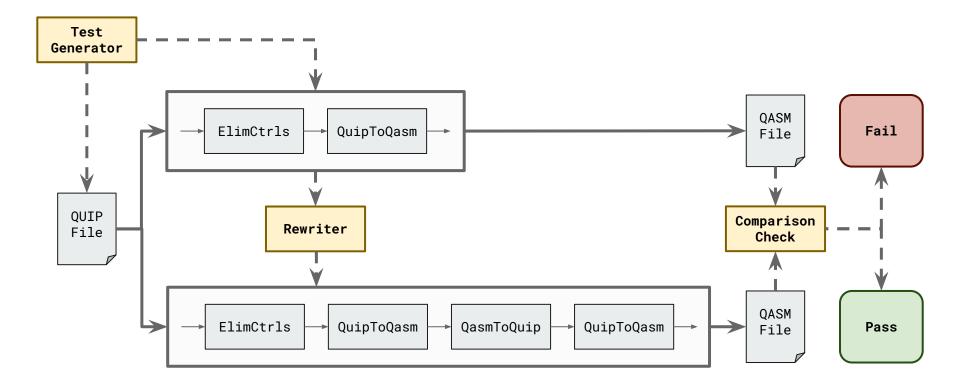

Our proposed solution is some sort of **subtyping**.

There are many **preprocessing** tools in LinguaQuanta.


ElimFuns ElimPows ElimInvs

One could expect these pipelines to be **equivalent**.

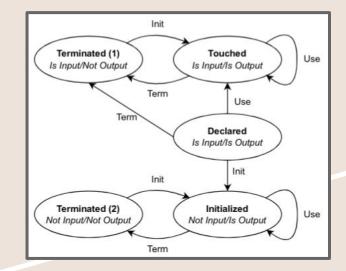
Though **commutativity** seems **too strong** a property.

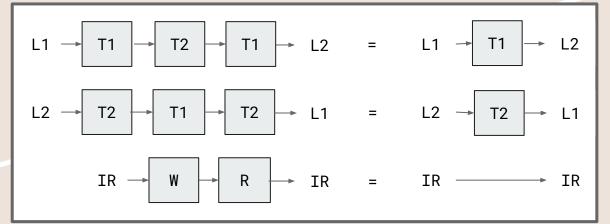

Our proposed solution is some sort of **subtyping**.

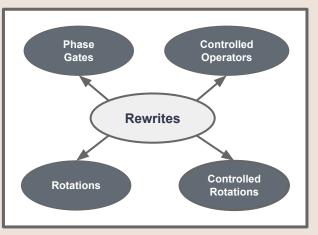
Appendix B

Whitebox Fuzzing and Pipeline Software

Future Work: Whitebox Fuzzing




Questions?


Want to learn more? Contact: scott.wesley@dal.ca

Want to try LinguaQuanta? Visit: <u>github.com/onestruggler/qasm-quipper</u>

A draft of the paper will be available through the IWQC website.

