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Categorical Specification
How Should an Ideal Transpiler Behave?
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The UNIX Design Philosophy and Pipelines

Implications of the UNIX philosophy:

1. Write programs that do one thing and do it well.
2. Write programs that work well together.
3. Write programs that handle text streams.
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What should we expect from a round 
translation in LinguaQuanta?

The output file types do not align with 
the input file types.
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ElimCtrls QuipToQasm ElimPows ElimInvsQUIP QASM

A portion of the OpenQASM 2.0 legacy support pipeline.

Now our pipelines are type safe in some very coarse 
grained sense. However, we would like to have a more 
fine-grained notion of correctness. Ideally, we would be 
able to validate these specifications algorithmically.

The rest of this section will refine these specifications 
to a satisfactory level, and then suggest a direction for 
future work.
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Q. What should happen to a round trip translation?
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This set of requirements entail the 
idempotence of round translations.

We argue that these are reasonable 
properties for a transpiler to satisfy. 
They capture requirements such as 
round translates are stable, and will 
not inflate file size.
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Q: Is there more structure to a transpilation stage?

L1 Tool L2

We know from compiler design that operating directly on source text is a bad design pattern… at the very least, 
we should have a “reader” (lexer + parser) and a “writer” (code generation phase).

ReaderL1 IR1 TransformerIR1 IR2 WriterIR2 L2

This yields the following definition:

L1 Tool L2 Reader Transformer Writer L2L1



Step 3: Read-What-You-Write (Retracts)

Q: How should readers and writers interact?

ReaderL Writer L WriterIR Reader IR



Step 3: Read-What-You-Write (Retracts)

Q: How should readers and writers interact?

ReaderL Writer L WriterIR Reader IR

It is possible that many syntactic structures map to the same internal representation (IR). For example, pairs of 
inverse modifiers cancel out in OpenQASM 3. However, each IR statement can have a canonical representation.



Step 3: Read-What-You-Write (Retracts)

Q: How should readers and writers interact?

ReaderL Writer L WriterIR Reader IR

It is possible that many syntactic structures map to the same internal representation (IR). For example, pairs of 
inverse modifiers cancel out in OpenQASM 3. However, each IR statement can have a canonical representation.

WriterIR Reader IR = IR IR

Categorically, this says that the reader should provide a retraction (left-inverse) for the writer.
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An Example Retraction With OpenQASM

qubit q;
inv @ s q;

Internal Rep.
   Gate: s
   Inverted: true

qubit q;
inv @ inv @ inv @ s q;

qubit q;
inv @ inv @ inv
    @ inv @ inv @ s q;

qubit q;
inv @ s q;Reader Writer
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Named gates without parameters typically require 
one-off translations. A part of this project was to 
bring together a list of these translations, in a 
“Rewriting Compendium”, so to speak.

Some statistics about this compendium:

1. Number of References: 9
2. Number of Rewrite Rules: 51
3. Number of Non-Elementary Relations: 41

This compendium is nowhere near comprehensive, 
but we hope for it to be a start for compiler design.

Some Example Rewrite Rules:

[2] M. Amy, D. Maslov, M. Mosca, M. Roetteler 2013.
[36] 
https://www.mathstat.dal.ca/~selinger/quipper/doc/
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The P(θ) gate in OpenQASM is a controlled phase.
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The following equation necessarily hold:

[35] Selinger, 2013.

In LinguaQuanta, we take U 
to be a controlled iX gate as 
this meets the specifications 
and also has a lower T-count 
than the Toffoli gate shown 
in the first decomposition.
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Translation from Quipper to OpenQASM
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Other Features and Ongoing Work
An Advertisement for Our Upcoming Paper



See the full paper for…

1. Design features that reduce the distance between a round translation and the identity morphism.
2. Emulating Quipper type conversions in OpenQASM 3.
3. Emulating  the OpenQASM measurement semantics in Quipper.
4. Early progress on ensuring the correctness of pre-processing components (control inlining).
5. A fully-worked example based around phase estimation.
6. A discussion surrounding the compositionality of parameterized gates, and a proposal for abstract types.
7. Translating Quipper ancillas to OpenQASM.

* The full paper if a work-in-progress, but a draft should be available in the near future. Please reach out to me!



Limitations and Future Work
A Roadmap for LinguaQuanta



A List of Key Limitations

Ongoing Development:

1. Support for type conversion in Quipper.

2. Support for OpenQASM’s user-defined gates.

3. Support for opaque gates.

4. Basic support for classical control.

5. Constant propagation for OpenQASM 3.

6. Bounded loop unwinding for OpenQASM 3.

Out-of-scope Features:

1. No-control flags in Quipper.

2. Dynamic lifting in Quipper.

3. Generalized controls in Quipper

4. OpenPulse and physical qubits in OpenQASM 3.

5. Floats and dynamic arrays in OpenQASM 3.



Future Research Directions

1. Categorical semantics for preprocessing in a transpilation pipeline.

2. Formal verification of LinguaQuanta and a general methodology.

3. Whitebox fuzzing of pipeline software through pipeline rewriting.

4. Empirical evaluations of LinguaQuanta (performance and conformance).
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A draft of the paper will be available through the IWQC website.

mailto:scott.wesley@dal.ca
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Future Work: Whitebox Fuzzing

ElimCtrls QuipToQasm

ElimCtrls QuipToQasm QasmToQuip QuipToQasm

QUIP
File Rewriter

Test
Generator

QASM
File

QASM
File

Comparison
Check

Fail

Pass



Questions?

Controlled
Rotations

Controlled 
Operators

Rotations

Phase 
Gates

Rewrites

IR R IR = IR IR

T2T1L1 L2

T2 T1L2 L1

T1

T2

= T1L1

T2L2=

L2

L1

W

Want to learn more? Contact: scott.wesley@dal.ca

Want to try LinguaQuanta? Visit: github.com/onestruggler/qasm-quipper

A draft of the paper will be available through the IWQC website.

mailto:scott.wesley@dal.ca
http://github.com/onestruggler/qasm-quipper

