
LinguaQuanta:
Initial Results on a Quantum Transpiler
Scott Wesley
Dalhousie University

Outline of Talk 1. Motivations and Background

2. Correctness: Categorical Specifications

3. Translations: Some Decompositions

4. Challenges: Ancilla Management

Acknowledgements
Colleagues and Collaborators

Key Collaborators

Dr. Peter Selinger (Dalhousie University)

Provided early consultation of semantics.

Xiaoning Bian (Dalhousie University)

Initiated the LinguaQuanta project.

Additional Project Support

Dr. Neil J. Ross (Dalhousie University)

Provided feedback as my PhD supervisor.

Dr. Simon Tsang (Peraton Labs)

Provided design feedback as a end-user.

A Word From Our Sponsors

This research was sponsored in part by the United States Defense Advanced Research Projects Agency (DARPA)
under the Quantum Benchmarking program, contract #HR001122C0066.

Objectives and Overview
A Tale of Two Languages

A Tale of Two Languages

OpenQASM 3 Quipper

Silq
CirqKet

Perceval Qiskit

 TKET Qiskit

A Tale of Two Languages

OpenQASM 3 Quipper

Silq
CirqKet

Perceval Qiskit

Qiskit TKET

A Tale of Two Languages

OpenQASM 3 Quipper

Silq
CirqKet

Perceval Qiskit

Qiskit

GridSynth

 TKET

A Tale of Two Languages

OpenQASM 3 Quipper

Silq
CirqKet

Perceval Qiskit

Qiskit

LSC Compiler GridSynth

 TKET

A Tale of Two Languages

OpenQASM 3 Quipper

Silq
CirqKet

Perceval Qiskit

Qiskit

LSC Compiler GridSynth

 TKET

A Tale of Two Languages

OpenQASM 3 Quipper

Silq
CirqKet

Perceval Qiskit

Qiskit

LSC Compiler GridSynth????????????

 TKET

A Tale of Two Languages

OpenQASM 3 Quipper

Silq
CirqKet

Perceval Qiskit

Qiskit

LSC Compiler GridSynth??????Transpiler

 TKET

Categorical Specification
How Should an Ideal Transpiler Behave?

The UNIX Design Philosophy and Pipelines

Implications of the UNIX philosophy:

1.
2.
3.

LinguaQuanta

The UNIX Design Philosophy and Pipelines

Implications of the UNIX philosophy:

1. Write programs that do one thing and do it well.
2.
3.

 LinguaQuanta

ElimInvs ElimCtrls ElimPows

ElimFuns QuipToQasm QasmToQuip

The UNIX Design Philosophy and Pipelines

Implications of the UNIX philosophy:

1. Write programs that do one thing and do it well.
2. Write programs that work well together.
3.

 LinguaQuanta

ElimInvs ElimCtrls ElimPows

ElimFuns QuipToQasm

ElimCtrls QuipToQasm

QasmToQuip

File

The UNIX Design Philosophy and Pipelines

Implications of the UNIX philosophy:

1. Write programs that do one thing and do it well.
2. Write programs that work well together.
3. Write programs that handle text streams.

 LinguaQuanta

ElimInvs ElimCtrls ElimPows

ElimFuns QuipToQasm

ElimCtrls QuipToQasm

QasmToQuip

Problem: Many Potential Pipelines

 LinguaQuanta

ElimInvs ElimCtrls ElimPows

ElimFuns QuipToQasm QasmToQuip

RegMerge ToLSC FormatQASM

ElimCtrls QasmToQuip ToLSC

QasmToQuip QuipToQasm

QasmToQuip QuipToQasm QasmToQuip

Problem: Many Potential Pipelines

 LinguaQuanta

ElimInvs ElimCtrls ElimPows

ElimFuns QuipToQasm QasmToQuip

RegMerge ToLSC FormatQASM

ElimCtrls QasmToQuip ToLSC

QasmToQuip QuipToQasm

QasmToQuip QuipToQasm QasmToQuip

The output file types do not align with
the input file types.

Problem: Many Potential Pipelines

 LinguaQuanta

ElimInvs ElimCtrls ElimPows

ElimFuns QuipToQasm QasmToQuip

RegMerge ToLSC FormatQASM

ElimCtrls QasmToQuip ToLSC

QasmToQuip QuipToQasm

QasmToQuip QuipToQasm QasmToQuip

What should we expect from a round
translation in LinguaQuanta?

The output file types do not align with
the input file types.

Solution: Study the Semantics of Pipelines

ElimInvs

ElimCtrls

QasmToQuip

QUIP QuipToQasm QASM

QASM QUIP

ElimPows

ElimFuns

QUIP

QASMQASM

QASM

QASM

QASM

QASM

QUIP

Solution: Study the Semantics of Pipelines

ElimInvs

ElimCtrls

QasmToQuip

QUIP QuipToQasm QASM

QASM QUIP

ElimPows

ElimFuns

QUIP

QASMQASM

QASM

QASM

QASM

QASM

QUIP

ElimCtrls QuipToQasm ElimPows ElimInvsQUIP QASM

Solution: Study the Semantics of Pipelines

ElimInvs

ElimCtrls

QasmToQuip

QUIP QuipToQasm QASM

QASM QUIP

ElimPows

ElimFuns

QUIP

QASMQASM

QASM

QASM

QASM

QASM

QUIP

ElimCtrls QuipToQasm ElimPows ElimInvsQUIP QASM

A portion of the OpenQASM 2.0 legacy support pipeline.

Solution: Study the Semantics of Pipelines

ElimInvs

ElimCtrls

QasmToQuip

QUIP QuipToQasm QASM

QASM QUIP

ElimPows

ElimFuns

QUIP

QASMQASM

QASM

QASM

QASM

QASM

QUIP

ElimCtrls QuipToQasm ElimPows ElimInvsQUIP QASM

A portion of the OpenQASM 2.0 legacy support pipeline.

Now our pipelines are type safe in some very coarse
grained sense. However, we would like to have a more
fine-grained notion of correctness. Ideally, we would be
able to validate these specifications algorithmically.

The rest of this section will refine these specifications
to a satisfactory level, and then suggest a direction for
future work.

Step 1: Round Translations (Idempotents)

Q. What should happen to a round trip translation?

QasmToQuipQuipToQasmQUIP QUIP

QasmToQuip QuipToQasmQASM QASM

=

=

=

Step 1: Round Translations (Idempotents)

Q. What should happen to a round trip translation?

QasmToQuipQuipToQasmQUIP QUIP

QasmToQuip QuipToQasmQASM QASM

=

=

QUIP

QASM

QUIP

QASM
?

=
?

Step 1: Round Translations (Idempotents)

Q. What should happen to a round trip translation?

QasmToQuipQuipToQasmQUIP QUIP

QasmToQuip QuipToQasmQASM QASM

=

=

QUIP

QASM

QUIP

QASM
?

=
?

Counterexample to Proposal

Step 1: Round Translations (Idempotents)

Q. What should happen to a round trip translation?

QasmToQuipQuipToQasmQUIP QUIP

QasmToQuip QuipToQasmQASM QASM

=

=

QUIP

QASM

QUIP

QASM
?

=
?

Counterexample to Proposal

QasmToQuip

Step 1: Round Translations (Idempotents)

Q. What should happen to a round trip translation?

QasmToQuipQuipToQasmQUIP QUIP

QasmToQuip QuipToQasmQASM QASM

=

=

QUIP

QASM

QUIP

QASM/

=/

Counterexample to Proposal

QasmToQuip

QasmToQuip

Step 1: Round Translations (Idempotents)

Q. What should happen to a round trip translation?

QasmToQuipQuipToQasmQUIP QUIP

QasmToQuip QuipToQasmQASM QASM

=

=

QUIP

QASM

QUIP

QASM/

=/

Step 1: Round Translations (Idempotents)

Q. What should happen to a round trip translation?

QasmToQuipQuipToQasmQUIP QUIP

QasmToQuip QuipToQasmQASM QASM

=

=

QUIP

QASM

QUIP

QASM/

=/

QasmToQuipQuipToQasmQUIP QASM

QasmToQuip QuipToQasmQASM QUIP

QuipToQasm

QasmToQuip

= QuipToQasmQUIP

QasmToQuipQASM=

QASM

QUIP

Step 1: Round Translations (Idempotents)

Q. What should happen to a round trip translation?

QasmToQuipQuipToQasmQUIP QUIP

QasmToQuip QuipToQasmQASM QASM

=

=

QUIP

QASM

QUIP

QASM/

=/

QasmToQuipQuipToQasmQUIP QASM

QasmToQuip QuipToQasmQASM QUIP

QuipToQasm

QasmToQuip

= QuipToQasmQUIP

QasmToQuipQASM=

QASM

QUIP

This set of requirements entail the
idempotence of round translations.

We argue that these are reasonable
properties for a transpiler to satisfy.
They capture requirements such as
round translates are stable, and will
not inflate file size.

Step 2: A Closer Look at Translations

Q: Is there more structure to a transpilation stage?

L1 Tool L2

Step 2: A Closer Look at Translations

Q: Is there more structure to a transpilation stage?

L1 Tool L2

We know from compiler design that operating directly on source text is a bad design pattern… at the very least,
we should have a “reader” (lexer + parser) and a “writer” (code generation phase).

ReaderL1 IR1 TransformerIR1 IR2 WriterIR2 L2

:=

Step 2: A Closer Look at Translations

Q: Is there more structure to a transpilation stage?

L1 Tool L2

We know from compiler design that operating directly on source text is a bad design pattern… at the very least,
we should have a “reader” (lexer + parser) and a “writer” (code generation phase).

ReaderL1 IR1 TransformerIR1 IR2 WriterIR2 L2

This yields the following definition:

L1 Tool L2 Reader Transformer Writer L2L1

Step 3: Read-What-You-Write (Retracts)

Q: How should readers and writers interact?

ReaderL Writer L WriterIR Reader IR

Step 3: Read-What-You-Write (Retracts)

Q: How should readers and writers interact?

ReaderL Writer L WriterIR Reader IR

It is possible that many syntactic structures map to the same internal representation (IR). For example, pairs of
inverse modifiers cancel out in OpenQASM 3. However, each IR statement can have a canonical representation.

Step 3: Read-What-You-Write (Retracts)

Q: How should readers and writers interact?

ReaderL Writer L WriterIR Reader IR

It is possible that many syntactic structures map to the same internal representation (IR). For example, pairs of
inverse modifiers cancel out in OpenQASM 3. However, each IR statement can have a canonical representation.

WriterIR Reader IR = IR IR

Categorically, this says that the reader should provide a retraction (left-inverse) for the writer.

An Example Retraction With OpenQASM

qubit q;
inv @ s q;

qubit q;
inv @ inv @ inv @ s q;

qubit q;
inv @ inv @ inv
 @ inv @ inv @ s q;

An Example Retraction With OpenQASM

Internal Rep.
 Gate: s
 Inverted: true

Reader

qubit q;
inv @ s q;

qubit q;
inv @ inv @ inv @ s q;

qubit q;
inv @ inv @ inv
 @ inv @ inv @ s q;

An Example Retraction With OpenQASM

Internal Rep.
 Gate: s
 Inverted: true

Reader

qubit q;
inv @ s q;

qubit q;
inv @ inv @ inv @ s q;

qubit q;
inv @ inv @ inv
 @ inv @ inv @ s q;

An Example Retraction With OpenQASM

qubit q;
inv @ s q;

Internal Rep.
 Gate: s
 Inverted: true

qubit q;
inv @ inv @ inv @ s q;

qubit q;
inv @ inv @ inv
 @ inv @ inv @ s q;

Reader

An Example Retraction With OpenQASM

qubit q;
inv @ s q;

Internal Rep.
 Gate: s
 Inverted: true

qubit q;
inv @ inv @ inv @ s q;

qubit q;
inv @ inv @ inv
 @ inv @ inv @ s q;

Reader
qubit q;
inv @ s q;Writer

An Example Retraction With OpenQASM

qubit q;
inv @ s q;

Internal Rep.
 Gate: s
 Inverted: true

qubit q;
inv @ inv @ inv @ s q;

qubit q;
inv @ inv @ inv
 @ inv @ inv @ s q;

qubit q;
inv @ s q;Reader Writer

Some Decompositions
Rewriting for a Quantum Transpiler?

OpenQASM and Quipper Lack Feature Parity

OpenQASM and Quipper Lack Feature Parity

OpenQASM and Quipper Lack Feature Parity

Specific Decompositions for Specific Gates

Named gates without parameters typically require
one-off translations. A part of this project was to
bring together a list of these translations, in a
“Rewriting Compendium”, so to speak.

Specific Decompositions for Specific Gates

Named gates without parameters typically require
one-off translations. A part of this project was to
bring together a list of these translations, in a
“Rewriting Compendium”, so to speak.

Some statistics about this compendium:

1. Number of References: 9
2. Number of Rewrite Rules: 51
3. Number of Non-Elementary Relations: 41

This compendium is nowhere near comprehensive,
but we hope for it to be a start for compiler design.

Specific Decompositions for Specific Gates

Named gates without parameters typically require
one-off translations. A part of this project was to
bring together a list of these translations, in a
“Rewriting Compendium”, so to speak.

Some statistics about this compendium:

1. Number of References: 9
2. Number of Rewrite Rules: 51
3. Number of Non-Elementary Relations: 41

This compendium is nowhere near comprehensive,
but we hope for it to be a start for compiler design.

Some Example Rewrite Rules:

[2] M. Amy, D. Maslov, M. Mosca, M. Roetteler 2013.
[36]
https://www.mathstat.dal.ca/~selinger/quipper/doc/

Wider Classes of Gate Decompositions

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Wider Classes of Gate Decompositions

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Wider Classes of Gate Decompositions

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Assume that V is a unitary and U = V2.

[4] A. Barenco et al., 1995.

Wider Classes of Gate Decompositions

Assume that V is a unitary and U = V2.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites
[4] A. Barenco et al., 1995.

The P(θ) gate in OpenQASM is a controlled phase.

Wider Classes of Gate Decompositions

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Wider Classes of Gate Decompositions

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Wider Classes of Gate Decompositions

Given a unitary operator U such that:

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Wider Classes of Gate Decompositions

Given a unitary operator U such that:

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

The following equation necessarily hold:

[35] Selinger, 2013.

Wider Classes of Gate Decompositions

Given a unitary operator U such that:

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

The following equation necessarily hold:

[35] Selinger, 2013.

In LinguaQuanta, we take U
to be a controlled iX gate as
this meets the specifications
and also has a lower T-count
than the Toffoli gate shown
in the first decomposition.

Wider Classes of Gate Decompositions

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Wider Classes of Gate Decompositions

Recall the following fact about matrix exponentials.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Wider Classes of Gate Decompositions

Recall the following fact about matrix exponentials.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Standard rotations are also matrix exponentials.

Wider Classes of Gate Decompositions

Recall the following fact about matrix exponentials.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Standard rotations are also matrix exponentials.

Let’s further assume the following relation.

Wider Classes of Gate Decompositions

Recall the following fact about matrix exponentials.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Standard rotations are also matrix exponentials.

Let’s further assume the following relation.

Then we obtain the following equality.

Wider Classes of Gate Decompositions

Recall the following fact about matrix exponentials.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Standard rotations are also matrix exponentials.

Let’s further assume the following relation.

Then we obtain the following equality.

Wider Classes of Gate Decompositions

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

Wider Classes of Gate Decompositions

Assume that U = CXBXA and CBA = I.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

[4] A. Barenco et al., 1995.

Wider Classes of Gate Decompositions

Assume that U = CXBXA and CBA = I.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

[4] A. Barenco et al., 1995.

Assume that D is self-inverse and R is a rotation
satisfying (DXD)R(θ)(DXD) = R(-θ) and R(θ)R(-θ) = I.

Wider Classes of Gate Decompositions

Assume that U = CXBXA and CBA = I.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

[4] A. Barenco et al., 1995.

Assume that D is self-inverse and R is a rotation
satisfying (DXD)R(θ)(DXD) = R(-θ) and R(θ)R(-θ) = I.

The following is a decomposition of C(R(θ)):

Wider Classes of Gate Decompositions

Assume that U = CXBXA and CBA = I.

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

[4] A. Barenco et al., 1995.

Assume that D is self-inverse and R is a rotation
satisfying (DXD)R(θ)(DXD) = R(-θ) and R(θ)R(-θ) = I.

The following is a decomposition of C(R(θ)):

Ancilla Management
Translation from Quipper to OpenQASM

Simulating Ancillas in OpenQASM 3

Quipper circuits allow for ancilla qubits.

Simulating Ancillas in OpenQASM 3

Quipper circuits allow for ancilla qubits.

Ancillas are managed using the following primitives.

InitTerm Discard

Simulating Ancillas in OpenQASM 3

Quipper circuits allow for ancilla qubits.

Ancillas are managed using the following primitives.

Conversely, OpenQASM allocates qubits up front.

InitTerm Discard

Simulating Ancillas in OpenQASM 3

Quipper circuits allow for ancilla qubits.

Ancillas are managed using the following primitives.

Conversely, OpenQASM allocates qubits up front.

InitTerm Discard

Other Features and Ongoing Work
An Advertisement for Our Upcoming Paper

See the full paper for…

1. Design features that reduce the distance between a round translation and the identity morphism.
2. Emulating Quipper type conversions in OpenQASM 3.
3. Emulating the OpenQASM measurement semantics in Quipper.
4. Early progress on ensuring the correctness of pre-processing components (control inlining).
5. A fully-worked example based around phase estimation.
6. A discussion surrounding the compositionality of parameterized gates, and a proposal for abstract types.
7. Translating Quipper ancillas to OpenQASM.

* The full paper if a work-in-progress, but a draft should be available in the near future. Please reach out to me!

Limitations and Future Work
A Roadmap for LinguaQuanta

A List of Key Limitations

Ongoing Development:

1. Support for type conversion in Quipper.

2. Support for OpenQASM’s user-defined gates.

3. Support for opaque gates.

4. Basic support for classical control.

5. Constant propagation for OpenQASM 3.

6. Bounded loop unwinding for OpenQASM 3.

Out-of-scope Features:

1. No-control flags in Quipper.

2. Dynamic lifting in Quipper.

3. Generalized controls in Quipper

4. OpenPulse and physical qubits in OpenQASM 3.

5. Floats and dynamic arrays in OpenQASM 3.

Future Research Directions

1. Categorical semantics for preprocessing in a transpilation pipeline.

2. Formal verification of LinguaQuanta and a general methodology.

3. Whitebox fuzzing of pipeline software through pipeline rewriting.

4. Empirical evaluations of LinguaQuanta (performance and conformance).

Questions?

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

IR R IR = IR IR

T2T1L1 L2

T2 T1L2 L1

T1

T2

= T1L1

T2L2=

L2

L1

W

Want to learn more? Contact: scott.wesley@dal.ca

Want to try LinguaQuanta? Visit: github.com/onestruggler/qasm-quipper

A draft of the paper will be available through the IWQC website.

mailto:scott.wesley@dal.ca
http://github.com/onestruggler/qasm-quipper

Appendix A Sub-Languages, Lattices, and Pipelines

Future Work: Hierarchical Types

There are many preprocessing tools in LinguaQuanta.

ElimFuns ElimPows ElimInvs

Future Work: Hierarchical Types

There are many preprocessing tools in LinguaQuanta.

ElimFuns ElimPows

ElimInvs

One could expect these pipelines to be equivalent.

ElimPows ElimInvs

ElimPows ElimInvs ElimPows

ElimPows ElimInvs ElimPows

ElimInvs

Future Work: Hierarchical Types

There are many preprocessing tools in LinguaQuanta. Though commutativity seems too strong a property.

ElimFuns ElimPows

ElimInvs

One could expect these pipelines to be equivalent.

ElimPows ElimInvs

ElimPows ElimInvs ElimPows

ElimPows ElimInvs ElimPows

ElimInvs

Future Work: Hierarchical Types

There are many preprocessing tools in LinguaQuanta. Though commutativity seems too strong a property.

ElimFuns ElimPows

ElimInvs

One could expect these pipelines to be equivalent.

ElimPows ElimInvs

ElimPows ElimInvs ElimPows

ElimPows ElimInvs ElimPows

Our proposed solution is some sort of subtyping.

QASM

QASM
INVS

QASM
POWS

QASM
FUNS

QASM
INVS,FUNS

QASM
MIN

QASM
POWS,FUNS

QASM
INVS,POWS

ElimInvs

Future Work: Hierarchical Types

There are many preprocessing tools in LinguaQuanta. Though commutativity seems too strong a property.

ElimFuns ElimPows

ElimInvs

One could expect these pipelines to be equivalent.

ElimPows ElimInvs

ElimPows ElimInvs ElimPows

ElimPows ElimInvs ElimPows

Our proposed solution is some sort of subtyping.

QASM

QASM
INVS

QASM
POWS

QASM
FUNS

QASM
INVS,FUNS

QASM
MIN

QASM
POWS,FUNS

QASM
INVS,POWS

ElimInvs

Appendix B Whitebox Fuzzing and Pipeline Software

Future Work: Whitebox Fuzzing

ElimCtrls QuipToQasm

ElimCtrls QuipToQasm QasmToQuip QuipToQasm

QUIP
File Rewriter

Test
Generator

QASM
File

QASM
File

Comparison
Check

Fail

Pass

Questions?

Controlled
Rotations

Controlled
Operators

Rotations

Phase
Gates

Rewrites

IR R IR = IR IR

T2T1L1 L2

T2 T1L2 L1

T1

T2

= T1L1

T2L2=

L2

L1

W

Want to learn more? Contact: scott.wesley@dal.ca

Want to try LinguaQuanta? Visit: github.com/onestruggler/qasm-quipper

A draft of the paper will be available through the IWQC website.

mailto:scott.wesley@dal.ca
http://github.com/onestruggler/qasm-quipper

