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Quantum computers hold great promise for efficiently simulating Fermionic systems, benefiting
fields like quantum chemistry and materials science. To achieve this, algorithms typically begin by
choosing a Fermion-to-qubit mapping to encode the Fermioinc problem in the qubits of a quantum
computer. In this work, we introduce ”treespilation,” a technique for efficiently mapping Fermionic
systems using a large family of favourable tree-based mappings previously introduced by some of
the authors. We use this technique to minimise the number of CNOT gates required to simulate
chemical groundstates found numerically using the ADAPT-VQE algorithm. We observe significant
reductions, up to 74%, in CNOT counts on full connectivity and for limited qubit connectivity-type
devices such as IBM Eagle and Google Sycamore, we observe similar reductions in CNOT counts. In
many instances, the reductions achieved on these limited connectivity devices even surpass the initial
full connectivity CNOT count. Additionally, we find our method improves the CNOT and parameter
efficiency of QEB- and qubit-ADAPT-VQE, which are, to our knowledge, the most CNOT-efficient
VQE protocols for molecular state preparation.

I. INTRODUCTION

Quantum computing has made significant strides in the
past decade. However, achieving fault-tolerant quantum
computing remains a challenging goal. Current quan-
tum devices have limitations such as a small number
of qubits, restricted qubit connectivity, and error-prone
gates, making it difficult to execute deep circuits required
for paradigmatic quantum algorithms [1]. Nevertheless,
recent experiments have demonstrated the potential of
today’s quantum devices, and have shown success in solv-
ing complex problems [2–5]. This potential offers valu-
able computational resources, particularly when com-
bined with classical computing [6–9], especially in mit-
igating the detrimental effects of noise [10–14].

Among the diverse applications of quantum comput-
ing, simulating many-body Fermionic quantum systems
with quantum devices presents an intriguing prospect,
especially in computational chemistry [15–17]. This po-
tential transformation extends to fields like material sci-
ence [18] and drug discovery [19–21], among others. Vari-
ous approaches exist for addressing these quantum chem-
ical problems on quantum computers [22–24], with many
utilizing the physical qubit state of the quantum device
to represent the desired many-body Fermionic system.
Properties of the system are then inferred through mea-
surements of the qubit state [25, 26]. One such ap-
proach is the Variational Quantum Eigensolver (VQE)
[27], which approximates the qubit representation of a
target Fermionic state, such as the ground state of a
Fermionic Hamiltonian. The algorithm begins by de-
riving a qubit Hamiltonian from the desired Fermionic
Hamiltonian using a Fermion-to-qubit (F2Q) mapping.
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Next, a parameterized quantum circuit, known as an
ansatz, is designed. Finally, the circuit parameters are
optimized using a classical optimizer, to minimize the
energy of the current quantum state for the qubit Hamil-
tonian.

For near-term quantum devices, circuit noise robust-
ness is crucial. VQE offers the potential to discover
such circuits, characterized by a reduced presence of
noisy entangling two-qubit CNOT gates compared to far-
term approaches like qubitisation [28]. The reduction of
these gates is important as they take longer and have
lower fidelities compared to single-qubit gates, contribut-
ing to computation errors [29]. One promising variant
of VQE is the Adaptive Derivative-Assembled Pseudo-
Trotter (ADAPT) VQE algorithm. It starts with a ref-
erence state, like the Hartree-Fock state, and sequen-
tially adds elements from a predefined candidate gate
set, known as a pool, to optimize for the target state
[30]. The choice of the operator pool significantly af-
fects the convergence and circuit cost in qubit space. Of-
ten, pools originating from Fermionic systems are cho-
sen to produce such circuits [30–32]. The Fermionic
pool [30] consisting of single- and double-excitation op-
erations present in the Unitary Coupled Cluster Singles
and Doubles (UCCSD) ansatz [33]. However, mapping
Fermionic operators to qubits can result in highly non-
local operations incurred from mapping indistinguishable
Fermions to distinguishable qubits. To address this chal-
lenge, the Qubit-Excitation-Based (QEB) pool was in-
troduced, which modifies elements of the Fermionic pool
to disregard Fermionic antisymmetry. This enables ef-
ficient implementation with a fixed number of CNOT
gates for full connectivity, making it a leading method
for state preparation [31, 34, 35]. Another approach,
the qubit-pool, reduces CNOT gate requirements further
by splitting QEB pool elements into individual 4-local
Pauli strings [32]. The unitaries in the non-Fermionic
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FIG. 1. Infographic of the treespilation algorithm.

pools do not have a straightforward representation in
Fermionic space. Although a representation does exist,
we refer to them as non-Fermionic pools. Additionally,
some entangler-circuit approaches aim to minimize gate
count by avoiding Fermionic operations altogether [36].

With most approaches to solving Fermionic problems
on quantum computers, a Fermion-to-qubit mapping is
selected. The mapping encodes a many-mode Fermionic
Hamiltonian and target state, |Ψf⟩, as a multi-qubit
Hamiltonian of Pauli operators and state, |Ψq⟩. The
choice of mapping is not unique, and different mappings
result in different qubit states with varying challenges
in preparation of |Ψq⟩ on the quantum device. More-
over, the interest lies not only in simulating |Ψf⟩ but
also in determining physical properties, ⟨Ψf | Of |Ψf⟩, of
certain Fermionic observable operators Of . The chosen
Fermion-to-qubit mapping maps Of to its qubit coun-
terpart, Oq, and the evaluation of ⟨Ψq| Oq |Ψq⟩ involves
measurements on a physical quantum device, incurring
measurement costs depending on the chosen mapping
[37, 38].

A significant obstacle in implementing these Fermionic
operations is the connectivity of the quantum device we
use to simulate the state. Limited connectivity devices,
such as those based on superconducting qubits, can in-
cur large circuit overheads when compared to full con-
nectivity due to the necessity of SWAP gates needed to
transpile the circuit to the device and due to the non-
local nature of the mapped Fermionic operations. To

address this issue, [39] introduces a versatile class of map-
pings and presents the Bonsai algorithm. This algorithm
tailors the Fermion-to-qubit mapping to the device, re-
ducing SWAP gate overhead by aligning the mapping’s
tree structure with the qubit connectivity graph. Subse-
quent research has built on this approach by employing
the framework to encode double excitations within two-
qubit subspaces to simplify the entanglement structure
and lower the computational cost of VQEs and tensor-
network simulations for chemical systems [40].

The significance of Fermion-to-qubit mappings has
thus fueled extensive research toward designing mappings
beyond the traditional Jordan-Wigner (JW) transforma-
tion [41]. Many efforts are directed towards lowering
Pauli weight, that is the number of qubits that the en-
coded Fermionic operators act on, from the O(N) scaling
of JW to more favourable O(logN) scaling of Bravyi-
Kitaev [42] where N is the number of modes simulated.
Certain mappings have succeeded in reducing the num-
ber of qubits from the N -qubits required to simulate N -
modes usually [43]. A substantial body of work has con-
centrated on reducing both these Pauli and qubit require-
ments in lattice models [44–49]. Others have optimized
measurement costs by introducing mappings with prov-
ably optimal Pauli weight [50]. Recently, the connection
between ternary trees and mappings has been explored
[51].

Additional work involves the study of custom encod-
ings to reduce circuit overhead in the context of VQE,
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as highlighted in [52]. In [53], a general scheme that em-
ploys a brute force search over the space of encodings
mapping from Majorana monomials to Pauli operators is
explored. These mappings are also optimized for limited
qubit connectivity settings, with resulting encodings pro-
viding fairly general optimality guarantees on solutions.
However, due to the high computational cost of the brute
force method, only small systems are feasible with a focus
on symmetric lattice models. In [44], the enumeration
scheme between Fermionic modes and qubit operators
representing said modes is explored to minimize various
simulation costs with the JW encoding.

When simulating a Fermionic state we are free to
choose the mapping of the Fermionic-based operations
comprising said state. In our paper, we introduce
“treespilation”, a technique that leverages this under-
standing and extends the Bonsai algorithm [39]. The al-
gorithm optimises a mapping of |ψf ⟩ to prepare |Ψq⟩ with
a low CNOT count. To illustrate this approach, we op-
timize the encodings for numerically produced ADAPT-
VQE ansatz, using Fermionic and introduced Majoranic
pools on setups with full and limited connectivity. Com-
paring our approach to the non-Fermionic QEB and
qubit pools, we observe that across the molecules consid-
ered, our method significantly outperforms these state-
of-the-art approaches on setups with limited connectiv-
ity. When considering setups with full connectivity, on
average, our approach shows improvement over using
QEB and qubit pools, challenging the benefits of employ-
ing these widely used non-Fermionic operations in state
preparation. Of the methods considered, we find the Ma-
joranic pool combined with treespilation to be by far the
most CNOT-efficient pool for state preparation on lim-
ited connectivity hardware. Specifically, we observe that
the limited connectivity overhead is eliminated, and in
certain cases, the CNOT count is reduced compared to
the full connectivity ansatz in the JW encoding. Figure
1 illustrates the method.

II. PRELIMINARIES

A. Fermionic systems

An N -mode Fermionic system in second quantiza-
tion can be described in terms of N creation operators

{a†i}
N−1
i=0 and annihilation operators {ai}N−1

i=0 that satisfy
the canonical anticommutation relations:

{ai, aj} = {a†i , a
†
j} = 0, (1)

{a†i , aj} = δij1. (2)

Mathematically, the N -mode Fermionic system is equiv-
alent to the N -dimensional Fock space F(CN ), a 2N -
dimensional Hilbert space spanned by the so-called Fock
basis. The operators defined above allow us to define the
basis as follows. First, the Fermionic vacuum |vacf⟩ is de-
fined to be the unique vector such that aj |vacf⟩ = 0 for

all j = 0, . . . , N − 1. The remaining basis elements can
be constructed by considering all possible combinations
of occupation numbers nj ∈ {0, 1}:

|n0n1 . . . nN−1⟩ :=
N−1∏
j=0

(a†j)
nj |vacf⟩ , (3)

where fnj = njf +(1−nj)1 for some fermionic operator
f .

Creation and annihilation operators are not the only
operators that can define the Fermionic space. It is also
common to define an equivalent set of so-called Majorana
operators {mk}2N−1

k=0 as

m2j := a†j + aj , (4)

m2j+1 := i(a†j − aj). (5)

Such operators obey many useful properties, such as be-
ing unitary and self-adjoint. Additionally, one can show
that they obey the anticommutation relation {mi,mj} =
2δij1.

The above ways of defining Fermionic systems allow us
to provide two equivalent forms of an N -mode second-
quantized Fermionic Hamiltonian:

Hf =

N−1∑
ij

hija
†
iaj +

N−1∑
ijkl

hijkla
†
ia

†
jakal

=

2N−1∑
ij

icijmimj +

2N−1∑
ijkl

cijklmimjmkml.

(6)

for coefficients hij , hijkl, cij and cijkl. The equivalence
between these forms comes directly from the linear de-
pendency presented in Eq. (4).

An important operation we consider in this paper is the
Majorana braiding transformation Ujk [54]. This unitary
swaps the roles of the k’th and j’th Majorana modes (up
to a sign), leaving other Majoranas unchanged. From
consideration of the Fermionic parity [55], the unitary
can be expressed as the Clifford operator:

Ujk = exp
{π
4
mjmk

}
=

1√
2
(1+mjmk) , (7)

with the Majoranas transforming as:

mj → UjkmjU
†
jk = −mk

mk → UjkmkU
†
jk = mj .

(8)

Considering U2j,2j+1, we see it exchanges the role of Ma-
joranas within Fermionic mode-j, that is m2j → −m2j+1

and m2j+1 → m2j . with creation and annihilation oper-
ators transforming as,

aj → −iaj ,

a†j → ia†j .
(9)
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Under this particular transformation, Fock basis states
are mapped to the same state with a phase shift, i.e.,
|n0n1 . . . nN−1⟩ → inj |n0n1 . . . nN−1⟩. Importantly, the
vacuum state is invariant for this transformation. For ar-
bitrary exchanges, this is not the case, as we see when we
consider swapping m1 and m2 that partially constitute
modes 0 and 1. In this case, the vacuum state |00⟩ is
transformed into a nontrivial linear combination of the
original Fock states

|00⟩ → U12 |00⟩ =
1√
2
(|00⟩ − i |11⟩), (10)

These features, wherein the Fock basis states are
mapped to basis states and vacuum state preservation,
hold significance for subsequent sections in which our
objective is to perform Fermion-to-qubit transformations
that maintain these features. Specifically, we aim to map
Fock product states to qubit states while encoding the
Fermionic vacuum state as the all-zero qubit state.

B. Fermion-to-Qubit mappings

The Fermionic Fock space, F
(
CN

)
, and the Hilbert

space of N qubits
(
C2

)⊗N
are both 2N -dimensional

Hilbert spaces; thus, we can unitarily map between them.
A natural unitary mapping is to map Fock basis states
F
(
CN

)
to computational basis states of the qubits such

that the occupation number of the j’th Fermionic mode
matches with the state of the j’th qubit [41]:

F
(
CN

)
∋ |n0n1 . . . nN−1⟩ 7→

N−1⊗
i=0

|ni⟩ ∈
(
C2

)⊗N
. (11)

This mapping is known as the Jordan-Wigner (JW)
transformation, and under it, the basis of Majoranas is
mapped to qubit space as:

m2j 7→ Xj

j−1∏
k=0

Zk and m2j+1 7→ Yj

j−1∏
k=0

Zk, (12)

for j = 0, 1, . . . N − 1. Here and in the rest of the paper,
we denote Pj with P ∈ {X,Y, Z} for an operator that
acts as the Pauli operator P on the j’th qubit and as the
identity on all others.

The JW mapping is part of the class of the so-called
Majorana string Fermion-to-qubit mappings, as it asso-
ciates a Majorana operator with a single Pauli string Si

while preserving the commutation relations:

{mi,mj} = 2δij1 → {Si, Sj} = 2δij1 (13)

for i, j ∈ {0, . . . , 2N−1}. This identification is implicitly
used in other canonical mappings [41, 42, 50, 56], and
we refer to the associated Pauli operators Si as Majo-
rana strings. To complete the mapping, these Majorana

strings are paired into qubit mode operators Ai and A
†
i .

Then, the qubit vacuum state |vac⟩q is found by solving

Aj |vac⟩q for j ∈ 1 . . . N . Note that many mappings exist

outside this class [42, 57, 58]; however, this class proves
particularly useful for quantum chemistry.

C. Ternary tree based Fermion-to-qubit mappings

We now present a useful class of Majorana-string
mappings introduced in [39], the product-preserving
ternary-tree (PPTT) based Fermion-to-qubit mappings.
These mappings possess the crucial property of prod-
uct preservation, transforming Fock basis product states
into qubit computational basis product states, i.e.,
|n0n1 . . . nN−1⟩ → |x0x1 . . . xN−1⟩ for xi ∈ {0, 1}. This
ensures the separability in qubit space for states such as
the Hartree-Fock. Another notable feature is that the
Fermionic vacuum is transformed to the all-zero qubit
state, i.e. |vac⟩f → |0 . . . 0⟩. This is particularly sig-
nificant, as these states are the initial starting points
for numerous quantum chemical algorithms, including
UCCSD and ADAPT-VQE, and can thus be prepared
without entangling gates. Additionally, the authors es-
tablish a connection between the tree structure of the
mapping and the encoding of Fermionic mode occupancy
information in qubits. The methodology encompasses
well-known mappings such as the Jordan-Wigner [41],
Bravyi-Kitaev [42], Ternary Tree [50], and Parity [43]
encodings. Furthermore, they introduce the Bonsai algo-
rithm, which leverages the flexibility of this methodology
to design mappings that reduce SWAP gate requirements
by aligning the generating ternary tree of the Fermion-
to-qubit mapping with the limited connectivity of the
quantum device.
A PPTT mapping is uniquely defined by a labelled

ordered TT. The ordered TT is a directed graph and a
tree with N nodes such that there is a unique node with
indegree 0, and all the nodes point to at most 3 other
nodes. These nodes are usually labelled as left, middle,
and right child, but for convenience, we will label them
with X, Y , and Z, respectively.
Given such a labelled ordered Ternary Tree (TT), one

can uniquely construct a PPTT Fermion-to-qubit map-
ping as follows. First, following the procedure presented
in [39], one can generate a basis of pairs of anticommut-
ing Pauli strings from the tree that are later connected to
particular Majoranas to complete the mapping. The pro-
cedure starts by adding “legs” to a ternary tree, which
are labels associated with each vertex so that the total
number of outward edges plus legs is equal to three for
each node. Then, Pauli-X, Pauli-Y , or Pauli-Z labels
are assigned to each of the legs of the tree, so that each
node has three edges or legs stemming from it with each
of these labels. For such a tree with N -nodes, there are
(2N + 1)-paths from the root to the legs. Pauli oper-
ators are associated with each of these paths by taking
the tensor product of each Pauli label along the path
where the Pauli acts on the qubit-u. All the Paulis gen-
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FIG. 2. Example of a mapping derived from a ternary tree.
The enumeration of the vertices corresponds to the qubits
while the black lines represent edges connecting two qubits
and the red lines represent legs which we label with a Majo-
rana string Su. We represent the Pauli labelling on the links
(both edges and legs) based on their position: the leftmost,
central, and rightmost links below node-u are labelled with
Xu, Yu and Zu respectively. This labelling is explicit along
the rightmost path (0-3-9). Each leg in the tree is associ-
ated with a Pauli string by following the path from the root
node (node-0, in this case) to the leg. The strings are gen-
erated as follows: each time a link with label P stemming
downward from a qubit-u is crossed, the Pauli operator P
acting on qubit-u is added to the string. The resulting string
acts trivially on all qubits not visited along the path, while
differs by only a single Pauli from any other string. To de-
fine the mapping, we remove the rightmost all-Z operator
(S22 = Z0Z3Z9 in this case), and the remaining strings are
paired into qubit modes according to the pairing algorithm
outlined in [39] and in doing so we associate the Pauli strings
Su with Majorana operators mi. Pairings are represented by
the green lines in the figure. This process ensures the sep-
arability of the Fermionic product states in qubit space and
maps the Fermionic vacuum to the zero qubit state. For ex-
ample, the leg S18 corresponds to the string S18 = Z0Z3X9,
while S19 = Z0Z3Y9. These strings are paired to represent the
ith-mode, ai =→ 1

2
(X9 + iY9)Z0Z3. For clarity purposes, we

omit the mode index and braiding flag from the node label.

erated this way pairwise anticommute, as they exhibit
nontrivial differences at a single qubit, that is, there is
one qubit at which they simultaneously have different a
Pauli assigned such that neither is identity. This pro-
cedure generates (2N + 1)-anticommuting Pauli strings
that are to be associated with 2N -Majorana operators.
This is achieved by removing the Pauli string that con-
sists of only Z-Paulis, leaving us with 2N -strings. Then
we apply the pairing algorithm outlined in [39] to form
N -Pauli operator pairs called qubit modes. In doing so,
we connect each string with a Majorana. Each qubit
mode is associated with the qubit in the TT at which
the corresponding Majorana string pair exhibits a non-
trivial difference.

A bijection is then established between the N -qubit
modes and the N -Fermionic modes of our system. Any
association ensures the PP property, as proven in [39].
Moreover, as demonstrated in Sec. IIA, we can inter-
change the roles of our Majoranas within mode pairs
while maintaining this property. It is important to note
that the Fermionic labelling of the Majoranas and modes
involve Fermionic operations that do not alter the Pauli

structure of the basis of strings generated by this con-
struction.
Thus, we redefine a PPTT mapping by a set of N -

nodes, each labelled with a triple (j, u, b) ∈ [N ] × [Q] ×
{+,−}, where j is the index for the Fermionic mode, u is
the qubit index of the Q-qubit machine, and b specifies
the Majorana order in the mode pair. Note that each
value of j and u can appear only once in the tree. For
each node with a label (j, u, b), mode-j is assigned to
the assigned pair of Pauli strings that exhibit nontrivial
difference at qubit-u.
It can be shown that the Majorana operators assigned

to a particular node for b =‘+’ correspond to

m2j → S
s
(u)
x

= Xu

∏
k∈Z(u)

x

ZkGu, (14)

m2j+1 → S
s
(u)
y

= Yu
∏

k∈Z(u)
y

ZkGu. (15)

When we exchange the Majoranas, i.e. b =‘−’, we get

m2j → −S
s
(u)
y

= −Yu
∏

k∈Z(u)
y

ZkGu, (16)

m2j+1 → S
s
(u)
x

= Xu

∏
k∈Z(u)

x

ZkGu. (17)

where Z(u)
x and Z(u)

y are sets of qubits that S
s
(u)
x

and S
s
(u)
y

act non-trivially on below qubit u in the tree, and Gu is
a common Pauli string. This equation can be graphically
understood as Gu being the common path of S

s
(u)
x

and

S
s
(u)
y

from the root to qubit-u and sets Z(u)
x and Z(u)

y are

qubits along the Z-paths bifurcating from the X- and

Y -legs of qubit-u. Note that Z(u)
x ∩Z(u)

y = ∅ for any x, y.
The mapped creation and annihilation mode operators

for c =‘+’ are thus,

aj 7→
1

2

Xu

∏
k∈Z(u)

x

Zk + iYu
∏

k∈Z(u)
y

Zk

Gu,

a†j 7→
1

2

Xu

∏
k∈Z(u)

x

Zk − iYu
∏

k∈Z(u)
y

Zk

Gu.

(18)

When the roles in the pair are switched, i.e. c =‘−’, a
complex phase term emerges as in Eq. (9).
The PP property is a crucial attribute of the mappings,

and the pairing algorithm outlined in [39] is proven to
ensure the PP property. To understand the significance
of this property, consider the vacuum state in a PPTT
mapping FPP, i.e., |vac⟩ → |0⟩. In FPP, we associate Ma-
joranas with Pauli strings, i.e. (m0,m1, . . . ,m2N−1) ↔
(S0, S1, . . . , S2N−1) where this notation means we asso-
ciate m0 ↔ S0,m1 ↔ S1 and so on. Now envision a
mapping FNPP that differs from FPP by the assignment
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of Majoranas to Pauli operators. This deviation is cap-
tured by permutation p from the initial order in FPP, i.e.
(m0,m1, . . . ,m2N−1) ↔ (Sp(0), Sp(1), . . . , Sp(2N−1)). The
vacuum state in the new mapping can be related to the
initial state by |0̃⟩ = T |0⟩, for some unitary T . To iden-
tify this operator, we can break down the permutation to
pairwise transpositions, p = (t0, t1)(t2, t3) . . . (tk−1, tk).
Each transposition can be interpreted as a pairwise ex-
change of the Majorana strings within qubit modes,
where the Fermionic representation is given by Eq. (7).
Thus, we can express the vacuum state in FNPP as,

|0̃⟩ = e
π
4 Stk−1

Stk . . . e
π
4 St2

St3 e
π
4 St0

St1 |0⟩ . (19)

Therefore, to prepare the vacuum trial state in a non-PP
TT mapping, one must apply several of these pairwise
braiding unitaries to the original PPTT vacuum state.
In practice, there may be prohibitively many transpo-
sitions, and the product SiSj can be highly nonlocal,
resulting in a large gate cost to merely implement the
vacuum state. Likewise, these exchanges must be imple-
mented to prepare the Hartree-Fock state defined as the

Fermionic product state,
∏

k∈O a
†
k |vac⟩, where O is the

set of occupied spin-orbitals. As in this paper, we seek to
reduce the number of CNOT gates, we strictly consider
the space of PPTT mappings.

D. State preparation

Quantum chemistry calculations using VQE-ansatz-
based approaches involve the preparation of a parame-
terised quantum circuit on the qubits of a quantum de-
vice, followed by appropriate measurements to determine
the desired chemical properties. On a quantum com-
puter, we are usually restricted to applying unitary op-
erations to construct this ansatz. In quantum chemistry,
these unitaries can be derived from chemical principles
such as the single- and double-excitation operators in
Unitary Coupled-Cluster techniques. These operations in
particular are important as they can construct an ansatz
to approximate an electronic wavefunction to arbitrary
accuracy [59, 60]. We can express such a Fermionic state,
denoted |ψf ⟩, as a product of r-unitaries applied to a ref-
erence state, |ψref⟩, as:

|ψf ⟩ =
∏
k

uk(θk) |ψref⟩ =
∏
k

eθkτk |ψref⟩ , (20)

where uk(θ) = exp(θτk) are unitaries parameterised
by θk generated by the Fermionic generators τk. This
Fermionic circuit is subsequently mapped to qubit space
using a Fermion-to-qubit mapping,

|ψf ⟩ → |Ψq⟩ =
∏
k

eθkTk |Ψref⟩ , (21)

where Tk and |Ψref⟩ are the qubit generators and refer-
ence state. The parameters θk are then optimized on the
quantum computer with a classical algorithm.

The ADAPT-VQE approach [30] has emerged as
a promising avenue for quantum-based chemical state
preparation. This technique involves iteratively applying
parameterized qubit unitaries from a predefined set of op-
erators, referred to as a “pool”, to a reference state while
minimizing the energy following the variational principle.
The choice of the pool significantly impacts both the con-
vergence of the ADAPT algorithm and the gates in the
quantum circuit representation of the ansatz.
A common choice is the Fermionic pool [30], compris-

ing single- and double-excitation operations that preserve
the spin and particle number of the resulting state. The
single and double excitation operators generate the pool:

τ ij = a†iaj − a†jai (22)

τklij = a†ia
†
jakal − a†ka

†
l aiaj , (23)

For j, k ∈ {0, . . . , N−1}. We can express these excitation
elements in terms of a linear combination of products of
underlying Majorana Fermions using Eq. (4). We define
the Majoranic pool by taking each element of this linear
combination and adding it to the pool separately for each
element in the Fermionic pool:

τvu = mumv (24)

τuvrs = imumvmrms (25)

for u, v, r, s ∈ {0, . . . , 2N − 1}.
Both of the aforementioned pools possess a proper

Fermionic representation, thus ansatz constructed from
them have a representation in Fermionic space given
by Eq. (20). However, accounting for Fermionic anti-
commutation when mapping to qubits generally leads to
highly nonlocal operators in qubit space. The Quantum-
excitation-based (QEB) pool [31] aims to rectify this non-
locality by not implementing the exact commutation re-
lations of the operators. It is derived by mapping the
Fermionic-spin pool using the JW transformation and re-
moving the trailing Z-strings, yielding qubit operators:

T i
j =

i

2
(XiYj − YiXj) , (26)

T ij
kl =

i

8
(XiYjXkXl + YiXjXkXl + YiYjYkXl

+ YiYjXkYl −XiXjYkXl −XiXjXkYl

− YiXjYkYl −XiYjYkYl).

(27)

The elimination of the parity-checking Z-strings is mo-
tivated by the existence of efficient circuit representa-
tions that can be achieved using a constant number of
CNOT gates, resulting in at most 4-local gates. Due to
the removal of the parity-checking strings, the Fermionic
interpretation for this pool is unclear, thus it has been
coined “pseudo-Fermionic”. Similar to how we did with
the Majoranic pool, the QEB pool can be broken down
further into the so-called qubit-pool [32], where in this



7

case the unitaries generated by single strings of Pauli op-
erators of weight 2 or 4. The QEB and qubit-pool are
defined only for the Jordan-Wigner mapping, unlike the
Fermionic-based pools.

III. TREESPILATION: OPTIMIZING THE
FERMION TO QUBIT MAPPING

A Fermion-to-qubit mapping is chosen to encode
Fermionic operations and the Hamiltonian in preparing
ansatz states. The choice of mapping is not unique, and
it can significantly impact the efficiency of the result-
ing circuit. In the case of the Fermionic and Majoranic
pools, we are entirely free to choose a mapping. In a
typical workflow, however, a single mapping is selected,
and the resulting circuit is optimized with a transpiler.

We can in general, exploit this freedom of mapping to
optimise a given state. To do so, one would need the
following elements:

1. A target Fermionic state, denoted |ψf ⟩: The
quantum state must be in a form that allows one
to effectively find the corresponding qubit repre-
sentation. Quantum states in Eq. (20) satisfy this
requirement.

2. A cost function C: For a given Fermionic state
|ψf ⟩ and mapping F , it computes the quality of
the qubit state C(|ψf ⟩ , F ). As this paper focuses
on minimizing the number of CNOTs for a tran-
spiled circuit representing the state F (|ψf ⟩), a nat-
ural choice is to use this number as the cost func-
tion. However, as we will show later, other cost
functions can be used.

3. A set of rules that allow us to transform a
given F2Q mapping F into another F ′: This
is essential for optimization algorithms. Various
methods, such as simulated annealing, may require
rules for generating new mapping candidates based
on optimization history.

4. An optimization algorithm: Equipped with
the cost function defined above, it searches for
high-quality Fermion-to-qubit mappings. Since the
space of PPTT mappings is discrete and large, a
natural choice is to use metaheuristic algorithms.

In this section, we develop an approach to systemati-
cally explore various Fermion-to-qubit mappings to find
efficient circuit representations of |ψ⟩. Specifically, we
will start by proposing multiple cost functions consid-
ered in this paper. Then we will introduce the simulated
annealing optimization algorithm considered in this pa-
per and present transformations allowing us to explore
the space of PPTT mappings. Finally, we will present
the treespilation algorithm.

A. Cost Functions

We now discuss the cost functions used to optimize
the qubit representations, |Ψq⟩, of |ψf ⟩. In present-day
quantum devices, the number of CNOT gates is a crucial
metric for analysing the feasibility of applying quantum
circuits on quantum hardware. These gates typically take
more time and introduce errors that are approximately
ten times higher than those of single-qubit gates [29].
Consequently, the cost functions employed in this con-
text will prioritize minimizing the CNOT count. To ef-
fectively optimize, an appropriate cost function must be
accurate and fast.
a. Transpiler cost The ideal cost function involves

processing a qubit state |ψq⟩ using a transpiler, like those
in Qiskit [61] or TKET [62], to calculate metrics such as
depth or CNOT count. Although this approach offers
high accuracy and optimization specific to the transpila-
tion scheme, it might be too slow in practice.
b. Pauli string cost Alternatively, one can consider

a simpler cost based on the Pauli representation of the
generators Ti that make up |Ψq⟩ as defined in Eq. (21).
On a fully connected architecture, implementing a Pauli
string represented as P requires 2(k − 1) CNOT gates,
where k is the Pauli weight, i.e. the number of non-
identity terms in the string. However, on a limited con-
nectivity architecture, implementing the same string ne-
cessitates 2(2n−k−1) CNOT gates, where n is the num-
ber of nodes in the Steiner tree spanning qubits acted
on by Paulis in the string [63] (i.e., a minimal subtree
of the hardware architecture containing the qubits acted
on by the Paulis in this string). For our purposes, this
cost estimates the number of CNOTs by iterating over all
the generators Ti that appear in the qubit state |Ψq⟩ as
defined in Eq. (21), and then estimating the sum of the
number of CNOTs required for all the Paulis that appear
in the following generator. The problem of finding an op-
timal Steiner tree is NP-hard in general [64]. However,
provided the underlying mapping tree is a subtree of the
hardware architecture, i.e. it is a mapping defined by the
Bonsai algorithm in [39], the strings resulting from single
and double excitation operations can be implemented op-
timally in polynomial time, as we prove in Appendix A.
This cost function provides a robust measure for Majo-
ranic pools but overlooks CNOT cancellations between
adjacent gates. In the Fermionic pool, where substantial
CNOT cancellations occur within generators, this sim-
plistic approach less accurately tracks CNOT costs. Im-
provement may be achieved by considering the collective
structure of Pauli strings within these generators.

B. Updating a tree-based mapping

When defining a PPTT mapping, we can adjust four
degrees of freedom:

1. Structure of the ternary tree.
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FIG. 3. The basic tree transformations allow us to transi-
tion between different tree-based mappings. (a) depicts the
deformation process of moving external leaves to free legs.
This transformation may modify the underlying edges of the
ternary tree, as demonstrated by the removal of edge (2, 6)
and the addition of edge (1, 6). Furthermore, the labelling of
the edges can be adjusted, as shown by the change from a Z
label to a Y label for edge (3, 7). (b) illustrates the ability to
change the root node.

2. Choice of the root node.

3. Association of Fermionic modes to qubit operators.

4. Ordering of Majoranas in the Fermionic mode
pairs.

The most basic transformation updating point 1 involves
moving a leaf to a leg, effectively converting that leg into
an edge of the ternary tree. In this way, we can change
both the Pauli-labelling and the edge structure of the
tree. The second degree of freedom in point 2 is the abil-
ity to switch the designation of the root node. Coupled
with 1, we can deform between this class of mappings as
we can from one ordered ternary tree to any other.

Item 3 relates to our freedom to choose a bijection be-
tween the Fermionic modes and the pairs of qubit Majo-
rana strings representing them. Furthermore, 4 exploits
the freedom to switch or braid the Majoranas within the
pairs defined in Eq. (4). Unlike the tree transformations,
these updates do not change the Paulis in the Majo-
rana strings that express the Fermionic system, they only
change how said strings are associated with Fermionic
mode operators.

All these transformations result in mappings that fall
within the vacuum preserving and PP categories. No-
tably, the braiding in 4 expands the space of possible
PPTT mappings beyond the original presentation in [39],
where braiding was not considered. Figure 3 visually il-
lustrates some of these degrees of freedom.

C. Optimisation

Using a cost function and transformation rules, we now
employ an optimization procedure to find a mapping that
minimises the cost of implementing |ψf ⟩. In this work,
we adopt simulated annealing as the chosen scheme.

Simulated annealing is a probabilistic optimization
technique inspired by the annealing process in metal-
lurgy. It begins with a solution and iteratively explores
potential solutions by introducing random changes. Once
a new candidate x′ is created from x, the algorithm eval-
uates the objective values E(x) and E(x′) and decides
whether a new candidate should be accepted based on
the difference between these objective values. If candi-
date x′ has a smaller objective value, then it is always
accepted. At the same time, if the objective value is
larger, it is only accepted with a decreasing probability
depending on the “temperature” t that changes during
the optimization. The probability of accepting a worse
solution at iteration k is exp{(E(x)− E(x′)) /tk}, where
tk is the temperature at step k. This probabilistic accep-
tance of worse solutions allows the algorithm to escape lo-
cal optima. This method applies to a wide range of com-
plex optimization problems, especially those with non-
convex or high-dimensional solution spaces where finding
optimal solutions is challenging. Simulated annealing re-
quires defining a way of applying “local” changes to a so-
lution, and the aforementioned transformation rules offer
exactly this. We note that more advanced optimization
algorithms like Tabu search may be used. Bringing this
together we introduce treespilation, for optimisation of a
Fermionic states’ mapping.

IV. METHODOLOGY

We now describe the methodologies used to pro-
duce the results presented in this paper. On full-
connectivity devices (FC), we initiate the annealing pro-
cess with a randomly generated mapping tree. For
limited-connectivity (LC), we start with a Bonsai trans-
formation of the device [39] so the tree underlying the
mapping is connected on the device, and from it, we can
determine the mapping from virtual to physical qubits.

For optimization purposes, we use the following
adapted mapping tree transformations:

1. Leaf move: For FC, choose a random terminal
node-v with three legs and attach it to the free
leg of another node-w that is neither v nor its par-
ent. For LC constraints, two choices are available:
If starting from a Bonsai transformation, i.e., the
mapping tree is connected on the device, the new
qubit that node-v assumes must be physically con-
nected on the device to the qubit that parent node-
w represents. We refer to this restriction as Con-
nectivity Preserving (CP), as the tree remains a
connected tree on the underlying connectivity. Al-
ternatively, one can perform Non-Connectivity Pre-
serving (NCP) optimization, where this constraint
is not applied, and the process proceeds as if it were
FC. The CP and NCP optimization strategies are
demonstrated in Figure 4.
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2. root change: A node v different than the root with
out-degree at most 2 is chosen as a new root. The
path from root to v is identified, and the tree is up-
dated so child and parent designations are swapped
along the path.

3. Pauli shuffle: A random node with an out-degree
of at least 1 is chosen and the Pauli operators as-
sociated with the links are changed.

4. mode association swap: Two nodes with labels
(i, u, b) and (i′, u′, b′) are chosen at random and
their labels are changed to (i′, u, b) and (i, u′, b′)
respectively.

5. Majorana braiding change: A node with label
(i, u, b) is chosen at random, and the braiding b is
changed to the opposite one, i.e., ‘+’ is changed to
‘−’ and vice versa.

While it is feasible to propose an alternative set of
transformations, we demonstrate in Appendix B that for
heavy-hexagonal and 2D grid hardware graphs, it is pos-
sible to convert any given PPTT F2Q mapping into an-
other using only connectivity-preserving leaf moves and
the four other transformations. This proof establishes
that these transformations provide sufficient control to
derive a high-quality mapping. Additionally, one might
anticipate a significant increase in possibilities with the
growth of qubit numbers in the device. However, as de-
tailed in Appendix C, the number of PPTT F2Q map-
pings on bounded-degree hardware graphs is roughly
equal to the total number of PPTT F2Q mappings. Fur-
thermore, the dependency on the number of qubits can
effectively become negligible.

We iteratively update the mapping with simulated an-
nealing, choosing to propose one of the random updates
above with equal likelihood. For the Fermionic pool, we
note the CNOT count of the generator is invariant to
pairwise braiding so we do not use them here. As men-
tioned, we consider the CP and NCP search settings of
the algorithm. Moreover, we also search in the restricted
space of mappings generated by fixing the underlying
mapping as JW and optimizing the assignment of qubit
modes to Fermionic modes. We name this setting Mode
Shuffling (MS).

To benchmark our approach, we compare it with
Fermionic and Majoranic pools mapped using the JW
encoding with gate compilation and transpilation being
pool and mapping dependant. For the Fermionic pool,
we utilize a circuit representation of excitation generators
from [65], known for its CNOT efficiency in the JW en-
coding to compile the ansatz initially. For MS with this
pool, we benefit from this representation as we use the
JW encoding. After optimizing the mapping beyond sim-
ple mode association permutation, we employ the TKET
compilation pass from [66] for effective gate compilation.

For the Majoranic pool on FC and LC, we initially
compile generators using the standard CNOT staircase
approach. After treespilation on FC, we apply the same

FIG. 4. Illustration of Connectivity Preserving (CP) and
Non-Connectivity Preserving (NCP) updates for a 9-mode
PPTT mapping on a 37-qubit heavy-hexagon processor. The
underlying mapping tree for CP, (a), is made of edges that are
connected on the device targeted. For NCP, (b), the edges of
the tree do not exist on the device

scheme. On LC with CP optimization, we use a Steiner-
tree compilation [63] with an optimal Steiner-tree gener-
ation (details in Appendix A). The assignment from log-
ical to physical qubits, necessary for the latter approach,
is provided by the underlying mapping tree. For NCP,
we compile strings using the standard CNOT staircase
approach since the underlying tree is not connected on
the device.

QEB and qubit pools are analyzed using the represen-
tations in [65] and the staircase approach, respectively.
In all cases, after compiling pool elements in the ansatz,
we use the Qiskit transpiler at optimization level 3 for
circuit optimization. For all cases on LC, bar CP, the
transpiler is used to find an assignment between virtual
and physical qubits. Refer to Table V in the appendix
for a summary of compilation and transpilation passes
used.

We assess our technique with both the Pauli and Tran-
spiler cost functions for the Fermionic and Majoranic
pools. We use the same passes as described previously for
the transpiler cost function. To mitigate the stochastic
nature of the Qiskit transpiler and the simulated anneal-
ing optimization scheme, was run five times and the min-
imal cost was selected. With each call of the transpiler
cost, we run the transpiler a single time.

We study the groundstate of six molecules LiH, N2,
BeH2, H6, C6H8, and C8H10, which, when mapped to
qubits, require 12, 12, 14, 12, 12, and 16 qubits to sim-
ulate for the active spaces and basis sets detailed in Ta-
ble VI. The ansatz are prepared through classical numer-
ical simulations using the ADAPT-VQE algorithm, with
results within an error margin of 10−3 Hartree of the ex-
act diagonalization result. Plots of the convergence of en-
ergy against CNOT gates are produced where, after each
excitation gate is added to the ansatz in the ADAPT
procedure, it is treespiled. We compare CNOT counts
on full connectivity as well as IBM Eagle heavy-hexagon
and grid-based Google Sycamore architectures.
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We evaluate our technique using both the Pauli and
Transpiler cost functions for the Fermionic and Majo-
ranic pools. The transpiler cost function employs the
same passes as described earlier. To address the stochas-
tic nature of the Qiskit transpiler and the simulated an-
nealing optimization scheme, we run them five times and
select the minimal cost for the final results. Each tran-
spiler cost assessment involves a single transpiler run.

Our study focuses on the ground state of six molecules:
LiH, N2, BeH2, H6, C6H8, and C8H10. When mapped to
qubits, these molecules require 12, 12, 14, 12, 12, and
16 qubits, respectively, for the active spaces and basis
sets detailed in Table VI. Ansatz are prepared through
classical numerical simulations using the ADAPT-VQE
algorithm, with results within an error margin of 10−3

Hartree compared to the exact diagonalization result.
Plots illustrating the convergence of energy against

CNOT gates are generated. After each excitation gate
is added to the ansatz in the ADAPT procedure, it un-
dergoes treespilation. We compare CNOT counts for full
connectivity as well as IBM Eagle heavy-hexagon and
grid-based Google Sycamore architectures. The connec-
tivity graphs are displayed in the Appendix (see Sec-
tion 9).

V. RESULTS

From analysing the number of generators in the
ADAPT simulations, in each case, we see the Fermionic
and Majoranic pools converge to 10−3 precision in fewer
or the same number of parameters compared to their non-
Fermionic counterparts, the QEB and qubit pools respec-
tively. This suggests that the Fermionic ground state can
be more easily expressed using true Fermionic operations.
Thus, we identify a potential tradeoff: using Fermionic
operators allows for reaching a given precision in fewer
iterations while using non-Fermionic counterparts may
require more iterations but potentially fewer CNOTs.

In Tables II, III, and IV, we present the Full Connec-
tivity (FC) and Limited Connectivity (LC) results of our
treespilation algorithm. For FC, we considered uncon-
strained and Mode Shuffling (MS) search settings with
both Transpiler Cost (TC) and Pauli Cost (PC) func-
tions. On LC, we explore MS, and Connectivity Preserv-
ing (CP) and Non-Connectivity Preserving (NCP) set-
tings with both costs. Overall, we observe a significant
reduction in the CNOT cost of implementing these states
with treespilation.

Specifically, for the Majoranic pool on FC, the CNOT
count reduced by an average of 49%, and with the Mode
Shuffling (MS) search space, the reduction was 33%, with
little difference between the Transpiler Cost (TC) and
Pauli Cost (PC) functions. For LC, we see reductions of
51% and 49% for the Connectivity Preserving (CP) and
Non-Connectivity Preserving (NCP) search spaces, re-
spectively. This indicates that the CP space, correspond-
ing to Bonsai mappings with pairwise mode braidings,

Molecule Fermionic Majoranic QEB Qubit

In. Fin. In. Fin.

(a) Full Connectivity

LiH (12) 158 98 154 40 97 74

N2 (12) 452 326 398 194 572 434

BeH2 (14) 580 356 962 438 554 774

H6 (12) 1660 1442 2398 1836 1400 1814

C6H8 (12) 362 262 274 122 216 156

C8H10 (16) 564 436 548 350 404 300

(b) Google Sycamore

LiH (12) 325 148 198 72 184 120

N2 (12) 1001 641 519 264 1236 890

BeH2 (14) 1289 729 1438 612 1214 1646

H6 (12) 3802 3359 3681 2216 3117 3896

C6H8 (12) 804 523 356 150 415 278

C8H10 (16) 1227 914 750 420 870 599

(c) IBM Eagle

LiH (12) 463 224 271 102 256 202

N2 (12) 1585 1006 665 350 1758 1444

BeH2 (14) 2059 1013 1917 824 1696 2715

H6 (12) 5783 4888 5261 2930 4506 6284

C6H8 (12) 1276 770 490 202 598 445

C8H10 (16) 1898 1358 943 566 1212 913

TABLE I. CNOT counts for groundstate preparation circuits
of various molecules obtained using the ADAPT-VQE algo-
rithm with different choices of pools transpiled on both full
and limited connectivity quantum devices. The number of
qubits used is indicated in brackets beside the molecule label.
Counts in bold correspond to the minimum of the rows. The
initial (In.) columns display counts of transpiled results us-
ing the JW encoding, while the final (Fin.) column shows the
results after treespilation and transpilation. Treespilation is
only applied to ansatz with clear Fermionic representations,
and as such, it is not used with qubit or QEB pools. For de-
tailed information regarding molecular geometries, ADAPT-
VQE convergence, device topologies, and transpilers used re-
fer to the Appendix section D.

contains high-quality solutions. We also found that the
PC cost effectively represents the CNOT cost and can re-
place the more time-consuming TC. MS on LC performed
worse, and a significant disparity between cost functions
was observed, with TC and PC achieving reductions of
33% and 28%, respectively, likely due to cancellations not
accounted for with the JW mapping.

For the Fermionic pool on FC, we observe an improve-
ment of 25% and 19% for TC and PC, respectively. With
MS, TC outperformed PC with a 27% and 25% reduc-
tion, respectively. On LC, we saw improvements of 28%
and 25% for TC and PC, with no discernible difference
between the CP and NCP search spaces. For MS, we see
a 33% and 21% reduction in TC and PC, respectively.
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FIG. 5. Visualisation of results tabulated in I.

Now, the PC cost does not faithfully represent the re-
sulting CNOT cost. With this pool, we find MS gener-
ally performs best. We partially attribute this success to
the ability to use efficient circuit compilation passes with
these mappings. The PC cost did not faithfully represent
the resulting CNOT cost for the Fermionic pool on LC,
likely due to the compilation scheme of the Fermionic
Pauli generators not sufficiently accounting for LC con-
straints and CNOT cancellations.

In Figure 5 and Table I, we present the best-performing
setting and cost function of treespilation, showcasing the
resulting CNOT counts. We achieved an overall average
improvement of 28% and 49% for the Fermionic and Ma-
joranic pools compared to the initial JW encoded ansatz
on FC. The largest reduction was for the Majoranic pool
with LiH, reaching three-quarters. For the Sycamore de-
vice, we report a respective average improvement of 34%
and 52%, and for the Eagle, 37% and 52%.

For reference, we include counts of the QEB and qubit
pool ansatz. On FC, the best-treespiled result exhibits an
average improvement of 23% compared to the best per-
formance of the QEB and qubit pools. For LC, the im-
provement is 44% and 51% for Sycamore and Eagle con-
nectivities, respectively. We observe that CNOT counts
on the Sycamore device are lower than those of the Eagle.
This is pronounced in the case of the Fermionic and QEB
pools, where the higher average degree of connectivity of
each qubit makes transpiling these operators easier, as
they demand a high degree of connectivity to implement
efficiently.

We found that treespilation shifted the aforementioned
tradeoff in favour of the Fermionic pools, resulting in
improved performance compared to their non-Fermionic
counterparts. One might attribute this to the notion that
the Fermionic and Majoranic pools generally have fewer
elements in their ansatz. However, this is not entirely
the case as, for example, with LiH where the number of
ansatz elements was identical, the Majoranic pool out-
performs the qubit pool.

We analyzed the performances across the entire energy
convergence against CNOTs of the ansatz in Figure 6.
We opted for unrestricted, and CP search spaces with PC
for the Majoranic pool on both FC and LC, as we noted
satisfactory performance with these selections. Select-
ing CP ensures that the resulting mapping for quadratic-
and quartic-Majorana-products, represented by the pool
elements in qubit space, can be optimally implemented
in polynomial time, as demonstrated in Appendix A. MS
with TC performed best for the Fermionic pool, so we
highlight this setting and cost. The treespiled Majoranic
pool performed exceptionally well on LC, often outper-
forming the initial JW-encoded FC result. On the other
hand, the qubit pool’s performance was underwhelming
partially due to more generators in the ansatz. Another
factor is the increased necessity for costly SWAP gates to
interconnect the sparse generators on LC. This is in con-
trast to the treespiled Majoranic pool, where we use the
mappings tree structure to reduce this sparsity, replac-
ing it with Pauli operators on qubits where SWAPs would
have been necessary. For example, with the CP setting
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FIG. 6. CNOT convergence of ADAPT-VQE groundstate simulations across six molecules, considering full, sycamore, and
eagle connectivity. For each molecule, six curves are presented: one for QEB- and qubit-pools, and one each before and after
treespilation with the Fermionic- and Majoranic pools. Before treespilation, the ansatz is encoded using the Jordan-Wigner
transformation. The dashed lines in the treespilation curves represent points where the optimized mapping from the previous
point serves as the starting point for the algorithm, and the resulting CNOT count is plotted. Due to the stochastic nature of
the qiskit transpiler used, the lines do not exhibit monotonic convergence.
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the mapping tree is connected on the device with nodes
representing physical qubits, causing the resulting Pauli
string generators to act on ‘mostly connected’ qubits.
Moreover, we cannot perform the efficient Steiner-tree
pass, as we do not know the optimal layout of this pool
ab-initio.

Overall, we find that using proper Fermionic pools can
significantly reduce the number of CNOTs required for
implementing ansatz compared to non-Fermionic pools.
Treespilation provides an effective approach to achieve
these reductions, particularly for the Majoranic pool on
LC. However, more efficient compilation methods are
needed for the Fermionic pool on LC.

VI. CONCLUSION

In this paper, we have presented a Fermion-to-qubit
mapping scheme to reduce the number of CNOT gates
required to implement Fermionic states through quantum
circuits. To achieve this, we defined a space of “good”
mappings characterized by product-preserving ternary
tree-based mappings combined with Majorana braid-
ings within Fermionic mode pairs. Additionally, we in-
troduced fundamental tree-mapping transformations al-
lowing for the deformation of any mapping within this
class, along with a procedure for optimization within
this space. Furthermore, we establish cost functions
that quantify a mapping’s CNOT cost within this space.
Using these tools, we introduce the “treespilation” al-
gorithm that tailors a mapping to the Fermionic rep-
resentation of the ansatz while considering the poten-
tially limited-connectivity architecture of the quantum
device. Essentially, our method can be seen as a meta-
compilation approach that augments the results from a
given transpilation scheme by optimizing the qubit rep-
resentation of a Fermionic state.

To illustrate our approach, we applied it to ansatz gen-
erated through statevector ADAPT-VQE simulations,
representing ground-state approximations of molecules
with different Fermionic-based operator pools. In sum-
mary, our method yielded encodings of Fermionic states
that significantly reduced the number of CNOTs required
to represent the qubit state on both full and limited
connectivity quantum computers. For instance, in the
case of LiH on full connectivity, we observed a remark-
able 74% reduction in CNOTs compared to the initial
Jordan-Wigner encoded ansatz. Additionally, when com-
paring our method to some similar, CNOT-efficient, non-

Fermionic-based pools, we found that, on average, our
approach significantly outperforms them.
In summary, our scheme presents a promising approach

to reducing the CNOT requirements for implementing
Fermionic ansatz on full and limited connectivity quan-
tum computers. Using it, we show that we can essentially
eliminate much of the circuit burden usually incurred by
the mapping of many-body Fermionic states to qubits.
Furthermore, we anticipate that the tools introduced in
this paper may be utilized to optimize various aspects
of Fermionic simulations, including measurement cost,
state fidelity, circuit depth and so on. It’s important
to note that while we use ADAPT-VQE as an example,
our methodology is broadly applicable in optimizing the
representation of Fermionic unitaries, such as chemical
Hamiltonians. Further work may explore more advanced
optimization schemes than simulated annealing. Here,
we explore mappings where the number of modes is equal
to the number of qubits simulated, however, it would be
interesting to study the effect of introducing ancillary and
removing qubits through symmetries.
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[40] T. Parella-Dilmé, K. Kottmann, L. Zambrano, L. Mor-
timer, J. S. Kottmann, and A. Aćın, “Reducing entan-
glement with physically-inspired fermion-to-qubit map-
pings,” arXiv preprint arXiv:2311.07409, 2023.

[41] P. Jordan and E. Wigner, “Über das Paulische
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Appendix A: Polynomial-time algorithm for Steiner-based implementation of Pauli exponentiation

Using the results from [63], one can find an efficient implementation of arbitrary exponentiation exp(−itP ) for any
real t and any Pauli string P on limited connectivity defined through a connected graph G = (V,E). First, we apply
one-qubit gates to transform the operation exp(−itP ) into exp(−itPZ), where PZ is a Pauli string defined over {I, Z}.
The transformed Pauli, PZ , acts non-trivially on the same set of qubits VP ⊆ V as P . We proceed then exactly as
described in [63]. A Steiner tree T = (VT , ET ) of VP over G is found, which is the minimal in the number of edges
subgraph of G such that VT ⊇ VP . This generates the minimal set of qubits that need to interact to implement
exp(−itPZ). Then, the following operations are applied iteratively:

1. we choose a particular leaf v of the tree and a vertex w connected to it,

2. we apply CNOT with control on v and target on w; if w ̸∈ VP , in addition, we apply CNOT with control on w
and target on v,

3. we remove v from VT , {v, w} from ET , and we repeat the above steps.

The procedure ends when we are left with just one node v′, on which we apply the rotation exp(−itZv′). Finally, we
uncompute all the steps done before the single-qubit rotation. The procedure requires 2(2VT − VP − 1) CNOTs.

Thus, the difficulty of finding a CNOT efficient circuit is reduced to the problem of finding the Steiner tree, which is
known to be NP-hard [64]. However, if the ternary tree of PPTT-based F2Q is a subgraph of the connectivity graph
G, one can show that the problem of finding Steiner trees for any product of a Pauli string resulting from the product
of 2 or 4 Majoranas can be done efficiently. These cases are important as the resulting strings compose the Fermionic
single- and double-excitation operations described in the main text and also form the Pauli strings in the second
quantised Hamiltonian. The rest of the section is dedicated to formally proving this fact. We start by introducing a
variant of the Steiner tree problem. We adopt the notation G[V ′] for the induced subgraph of G generated by the
vertex subset V ′.

Definition A.1 (PPTT F2Q Steiner Tree Problem). Let G = (V,E) be an undirected connected graph, and
V ′ ⊆ V be a set of terminals. We call finding a Steiner tree of V ′ in G a PPTT F2Q Steiner Tree Problem if
at least one of the following holds:

1. G[V ′] has at most two connected components, or

2. G[V ′] is disconnected and there is exactly one vertex v ∈ V \ V ′ s.t. the G[V ′ ∪ {v}] is a connected component

Let us start by showing that it is easy to solve the PPTT F2Q Steiner Tree Problem exactly.

Theorem A.1. PPTT F2Q Steiner Tree Problem is in P.

Proof. Suppose that G[V ′] is connected. Then it is enough to find any spanning tree of the graph, which can be done
in polynomial time.

Suppose that G[V ′] consists of two connected components, defined over vertex sets V ′
1 and V ′

2 . Let (v, v1, . . . , vk, w)
be the shortest path over (v, w) ∈ V ′

1 ×V ′
2 . Such a path can be found by applying e.g. Floyd-Warshall algorithm that

runs in O
(
|V |3

)
time, and exhaustively searches for the smallest distance which takes O(|V ′

1 | · |V ′
2 |) = O

(
|V |2

)
. Note

that vi ∈ V \ V ′, as otherwise shortest path could be found that connects vertices from V ′
1 and V ′

2 . Note that adding
edges from this path to G[V ′] makes a new connected graph, for which we can find a spanning tree efficiently. By the
definition, such a graph is the Steiner tree of V ′. On the other hand, one cannot hope for finding a smaller Steiner
tree as it would contradict the chosen path (v, v1, . . . , vk, w) to be the shortest path.
Finally, if G[V ′] is disconnected up to one vertex v, it is clear that the spanning tree of G[V ′ ∪ {v}] is a minimal

Steiner tree for V ′.

In addition, we can show that adding edges to the graph G does not make the problem harder.

Theorem A.2. Suppose we’re given a PPTT F2Q Steiner Tree Problem defined over graph G = (V,E) and
set of terminals V ′ ⊆ V . Then adding any new edge to E makes it still an instance of PPTT F2Q Steiner Tree
Problem.

Proof. Let G′ be the new graph formed by adding a new edge to G. It is enough to show that G′[V ′] satisfies the
same properties as G[V ′] required by the definition of PPTT F2Q Steiner Tree Problem.

If G[V ] has at most two connected components, then the same can be said for G′[V ′]. Furthermore, if there is a
unique vertex v s.t. G[V ′ ∪ {v}] is connected, adding an edge will either make G′[V ′] a connected subgraph which
makes the problem of the first type as introduced in the definition of PPTT F2Q Steiner Tree Problem, or
G′[V ′ ∪ {v}] is connected.
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The practical implication of the theorem above is that demonstrating the polynomial complexity of finding a Steiner
tree on the ternary tree implies its polynomial complexity on the hardware connectivity graph. It is essential to note
that this doesn’t guarantee the Steiner tree will be the same, as increasing the number of edges in the hardware
connectivity graph may allow finding a smaller Steiner tree.

We conclude this section by demonstrating that, for any Pauli string representing the product of 2 or 4 Majoranas,
solving the Steiner tree problem can be accomplished in polynomial time. The proof will be presented by establishing
that the Steiner problem will conform to the form defined in PPTT F2Q Steiner Tree Problem. We begin with
the product of 2 Majoranas, which can be shown to consistently form a connected path on the ternary tree in qubit
space.

Theorem A.3. Let the hardware connectivity graph G be a connected graph. Let there be an arbitrary PPTT F2Q
defined through a ternary tree which is a subgraph of G. Then for any product of two strings generated by the PPTT
mapping, the qubits on which the products act non-trivially induce a connected component on G.

Proof. Let S1 and S2 be two Majorana strings (i.e., Pauli strings representing Majorana operators) generated by the
PPTT mapping as described in the theorem statement. Each is constructed by taking a path from the root to a leg
(v1 = root, . . . , vk, l), where vk is the last node to which the leg l is assigned. This path defines each Majorana string.
For each node vi with the label (j, u, c), we take the vi+1-th Pauli label P ∈ {X,Y, Z} and apply it to qubit j. The
product over v1, . . . , vk (for the last one, we take the leg’s Pauli operator) defines the Pauli string.
Now, suppose that v2 is different for both Majorana strings, indicating that the strings diverge at the root v1. This

implies that there is no shared ternary tree node for the strings except for the root. In addition, the Pauli operator
acting on the root is different. Since for any two non-identity Paulis P1 and P2, we have P1P2 ̸= I, the product of
these two Majorana strings will be a path of non-identity Paulis acting on qubits from the leg of one string, through
the root, to the leg of another string. Such a Pauli operator acts on qubits forming a connected path on the mapping’s
underlying tree, and hence a connected path on G.
Note that if v2 is the same for both strings, then there must be a node vm (possibly a leaf) in the path at which

the strings diverge. In this case, the product of those strings does not include the root, as we act with the same Pauli
on it, and on all the nodes up to vm exclusively. However, in this case, the strings form a connected path from one
leg to another through vm to the leg of another string. In this scenario, we can also observe that the qubits form a
connected (possibly one-node) path.

Note that in the proof, we utilized the fact that if two Majorana strings diverge at any point, they form a connected
component. This is because the two strings are identical up to the point of divergence and cancel out when multiplied
together. This fact will be frequently used in the following theorem for the product of 4 Majorana strings. We adopt
the notation A ∝ B if A = cB for some complex number c.

Theorem A.4. Let the hardware connectivity graph G = (V,E) be a connected graph. Assume there is an arbitrary
PPTT mapping defined on a ternary tree that is a subgraph of G. Let S be the product of any 4 Majorana strings.
Then, finding the Steiner tree over G for qubits on which S acts non-trivially can be done in polynomial time.

Proof. The proof will proceed by showing that finding a Steiner tree on the ternary tree is a PPTT F2Q Steiner
Tree Problem.

We will prove the statement by considering several scenarios in which Majorana strings will diverge at different
nodes and in various combinations of directions.

1. Majorana strings leave the root in all X, Y , Z directions: In this case, the root is a terminal as
PPP ′P ′′ ∝ P for any pairwise different non-identity P, P ′, P ′′. With this example, all the nodes that are on
the paths of Majorana strings leaving into P ′ and P ′′ directions form a connected path that passes the root and
are terminals. On the other hand, for Majorana strings leaving into P direction, the case reduces to what was
observed for the product of two Majorana strings analyzed in Theorem A.3. This means that all the nodes up
to a diverging node (excluding the diverging node and the root) will not be terminals, and all the other nodes
from these two Majorana strings will be terminals. Eventually, we will obtain a single connected component if
the Majorana strings diverge at the P -children of the root, or they will form independent connected components
if they diverge later, reducing the problem to PPTT F2Q Steiner Tree Problem.

2. Majorana strings leave the root in pairs in two directions: In this case, the root is not included as
PPP ′P ′ = I for any Paulis P, P ′. Two pairs of Majorana strings will always form two disconnected components,
following the reasoning in Theorem A.3 for each pair independently, again reducing the problem to PPTT F2Q
Steiner Tree Problem.
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3. Three Majorana strings leave the root in one direction, and the 4th one leaves in another direction:
In this case, the root is always a terminal, as PPPP ′ ̸∝ I for any P, P ′ different than identity. Similarly, all the
nodes on the path before the next diverging point for the three Majorana strings will be terminals until they
diverge. At the diverging qubit, one of the two possibilities can occur:

(a) All Majorana strings leave in different directions: The diverging node is not a terminal as XY Z ∝ I,
however, all other nodes are terminals, forming in total 4 connected components including the one already
created with the root. In this case, adding the diverging node will make the induced graph connected,
which reduces the problem to PPTT F2Q Steiner Tree Problem.

(b) Two Majorana strings leave in one direction, and the 3rd Majorana string leaves in another
direction: In this case, the diverging node is a terminal as PPP ′ = P ′ for any non-identity P, P ′, and so
are the nodes from the 3rd Majorana string. The two Majorana strings going in the same direction might
form the second connected component if they do not diverge at the children of the diverging node. Since
eventually we have at most two connected components, the problem reduces to PPTT F2Q Steiner
Tree Problem.

4. All Majorana strings leave in the same direction: In this case, neither the root nor the nodes on the
path before the first diverging node are terminals as P 4 = I for any Pauli P . Then, the analysis reduces to one
of the cases above except instead of the root, the diverging node is a starting point.

As shown in the analysis above, in all cases, the problem reduces to PPTT F2Q Steiner Tree Problem. By
Theorem A.2, the result generalizes to a hardware connectivity graph G after adding missing nodes from G that are
not in the ternary tree, allowing finding the Steiner tree in polynomial time thanks to Theorem A.1.

The two last theorems above can be concluded with the following lemma.

Theorem A.5. Let S be a Pauli string, representing a product of 2 or 4 Majorana strings defined over k qubits,
coming from the PPTT F2Q mapping with the ternary tree as a subgraph of the hardware connectivity graph. One
can find an optimal Steiner tree with n ≥ k nodes in the hardware connectivity graph in polynomial time, which, in
turn, allows the implementation of exp(−itS) for any real t with only 2(2n− k − 1) CNOTs.

Proof. The fact that the Steiner tree can be found in polynomial time comes directly from Theorems A.3 and A.4.
The number of CNOTs comes from the implementation proposed in [63].

Appendix B: Reachability of PPTT F2Q mappings

In this section, we analyze whether the PPTT F2Q transformations, as presented in Sec. IV, allow transforming
any hardware connectivity-preserving PPTT F2Q to any other hardware connectivity-preserving PPTT F2Q. Starting
from now, we will assume that we are given an undirected graph G = (V,E) representing the quantum hardware
connectivity, and the ordered ternary tree (OTT) used for any considered PPTT F2Q is a subgraph of G without
explicitly stating it.

For general graphs, it can be shown that transforming one F2Q mapping into another is not always possible with
the transformations from Sec. IV. Consider a full OTT. For sufficiently many nodes (at least 16), there is a node
v that has both a parent and all three children, none of which are leaves. Now, suppose that the graph G is the
underlying ternary tree, and to v we attach a long path tree only. The aforementioned F2Q mapping, as well as, for
example, the JW mapping defined on this path graph, are hardware-connectivity preserving PPTT F2Q mappings.
However, transforming the former to the latter would require creating a tree with one node connected to 5 nodes at
once, as shown in Fig. 7. Since our PPTT F2Q mappings require the tree to be a ternary ordered tree, such a move
is not allowed. Note that if we relax this restriction that the OTT must be a subgraph of G, then of course we can
reach any PPTT mapping.

On the other hand, it is possible to provide sufficient conditions that allow showing that any PPTT mapping can
be generated from any other on a sufficiently large heavy-hexagonal and two-dimensional grid graph. We dedicate the
rest of the section to proving this fact. We start with the following lemma, which reduces the complexity of changing
between F2Q mappings, as long as the rules allow changing any subtrees with at most degree 3. For this, we introduce
the term “underlying tree.” Let H be the OTT used for a particular PPTT F2Q. The underlying tree of H is a simple
graph (without a root pointed) such that all the arcs in the OTT are replaced with edges. Note that this is a proper
subgraph of G and a tree. The underlying tree of an F2Q mapping is the underlying tree of the OTT used in the
mapping.
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FIG. 7. An example of the ternary tree (green nodes) which cannot produce any other ternary tree. The only node to which
any leaf could be attached already has degree 4 in the tree, and degree 5 is not allowed

Lemma B.1. Let G = (V,E) be an undirected connected graph, and let there be two PPTT F2Q mappings F1, F2

with underlying trees T1, T2. Assuming that moving leaves allows transforming T1 into T2, one can transform F1 into
F2 with the steps introduced in Sec. IV.

Proof. First, let us note that for any fixed OTT, swapping modes associated with any two nodes allows the production
of any mode association. Similarly, changing braiding can also be done independently of the other changes to the
PPTT F2Q mappings. Moreover, children for any node can be reassigned with a new Pauli without changing the
underlying tree. Finally, since one can change any root to any other node that can be a root, the only issue with
changing one F2Q to another is with changing the underlying tree.

Note that the lemma almost allows us to focus solely on the underlying trees. However, at this moment, it remains
unclear if we can move leaves freely in the underlying tree, as we may accidentally connect the 4-th node to the root
of the tree. Fortunately, by changing the root, we don’t have to worry, as one can attach a node ‘to the root’.

Lemma B.2. Let T1 be an underlying tree of OTT, and let T2 be another underlying tree of OTT that differs from
T1 by reattaching the leaf. Then it is possible with the steps introduced in Sec. IV to reach PPTT F2Q with underlying
tree T2 out of PPTT F2Q with underlying tree T1.

Proof. Note that the only problem that arises might be if we would assign the moved leaf to a root and make it a
degree-4 node. However, such a node can’t be a root for T2, so before moving the leaf we simply have to move the
root to any node which is not the moved leaf. Fortunately, one can show that for any tree, one can find at least two
nodes with degree 1, as otherwise we contradict the degree sum formula:∑

v

degree(v) ≥ 2(n− 2) + 1 > 2(n− 1) = 2|E|. (B1)

In light of Lemma B.1 which allows us to change mode association, braiding and root position arbitrarily, we have
proved the statement of the lemma.

The lemmas above allow us to think about the reachability of any PPTT F2Q mapping from any other PPTT
F2Q only in terms of underlying graphs, without even being concerned about the root position. Before showing
sufficient conditions for reaching any PPTT F2Q mapping, let’s introduce a definition that will turn out to be useful
for demonstrating how to construct an arbitrary underlying tree on particular hardware connectivity graphs.

Definition B.1. Let G = (V,E) be arbitrary undirected connected graphs and let V ′ ⊂ V . Let W ⊂ V s.t. G[W ] and
G[V \W ] are connected, and W ∩ V ′ ̸= ∅. We call sequence of sets (V1, . . . , Vk) a ping-pong partition of the V ′ over
(G,W ) if simultaneously

1. {Vi}i is partition of V ′,

2. Vi ⊆W for odd i and Vi ⊆ V \W for even i,

3. G[
⋃k′

i=1 Vi] is connected for any 1 ≤ k′ ≤ k.
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Note that 3. implies that G[V ′] is connected. A particular algorithm for generating one goes as follows: first, we
choose an arbitrary vertex v ∈ V ′∩W and find the maximum number of nodes in the induced graph inside G[W ]. The
vertex set of this induced graph is our V1. Then we find the maximum set of nodes V2 ⊆ V \W such that G[V1 ∪ V2]
is connected. We repeat the process, constructing consecutive V1, . . . , Vk until they form a partition of V ′.
Equipped with such definitions, we are ready to prove the main theorem of this section.

Theorem B.3. Let G = (V,E) be a simple connected graph and suppose we are given a n-mode PPTT F2Q mapping
defined over G. Then one can create any other PPTT F2Q mapping provided the sufficient conditions on G hold:

1. the maximum degree of G is 4,

2. there exists W ⊂ V s.t. G[W ] and G[V \W ] are connected and |W |, |V \W | ≥ n.

Proof. Let there be two PPTT mappings with underlying trees T1, T2 = (VT2 , ET2). In light of Lemma B.1 and
Lemma B.2, it is enough to show that by moving leaves such that all intermediate graphs are subtrees, we can
transform tree T1 into T2. Note that using the fact that the maximum degree of nodes in G is 4, we can never produce
a tree with a maximum degree of 5 or more. Thus, we can always find a valid PPTT mapping for each of them.

Without loss of generality, we will assume that T1 has nodes in V \W only, and T2 has nodes in both V \W and W .
This is because if we can transform T1 into T2, we can also transform T2 to T1. Additionally, the same conclusions by
symmetry can be done by swapping V \W and W . Finally, such transformations can be chained to eventually allow
the transformation of any tree to any other tree.

Furthermore, we will assume that T1 has a node that has a neighbour in W ∩VT2
, a so-called element of the border

of G[V \W ]. Otherwise, we could transform the tree so that it will satisfy this assumption as follows. First, we look
for a path over nodes from V \W that connects a particular node in T1 with any node v from the border such that
intermediate nodes are not in T1. Finally, we iteratively move leaves from the consecutively generated trees and add
them along the path, up to v inclusive. This way we can transform T1 appropriately.
Now let (V1, . . . Vk) be a ping-pong partition of VT2 over (G,W ). Given T1, we create a tree T (1) by moving leaves

from T1 to V1. Note that since the border element v is a neighbouring element of W ∩ TV2 , each leaf moved from
T1 can be already assigned to some element from V1, connecting them according to T2. This way, after moving |V1|
nodes, we have a subtree with all the nodes from V1 and edges as in T2[V1]. Finally, we move all the remaining nodes
from T1 and assign them arbitrarily to V1 so that they will form a connected tree T (1) with all nodes in W and
T (1)[V1] = T2[V1]. Note that since G[W ] is a connected subgraph with n nodes, one can always find free nodes in
W \ V1.

The steps above are repeated for Vk′ with k′ = 2, . . . , k with the following updates:

1. We are not moving nodes that are already in
⋃k′−1

i=1 Vi.

2. The nodes from Vk′ should be connected to
⋃k′−1

i=1 Vi along the T2 structure.

Constructing a new T (k′). With such rules, for each k′, we have T (k′)[
⋃k′

i=1 Vi] = T2[
⋃k′

i=1 Vi], which eventually will
produce T2 for k′ = k. The visualization of the process described in the last two paragraphs can be found in Fig. 8.

Note it is rather easy to relax the conditions of the theorem. First, we don’t need a partition into W and W \ V
both having n or more nodes as long as we can fit all the remaining nodes in the process. With similar arguments,
we don’t necessarily require G[W ] and G[V \W ] to be connected as already depicted in Fig. 8. Finally, the condition
on maximum degree could also be relaxed as long as we can guarantee that the intermediate trees will always have
maximum degree 4.

However, this theorem is sufficient to show that reaching any PPTT F2Q mapping is possible on sufficiently large
heavy-hexagonal and 2D grid graphs. For both classes, the maximum degree of nodes are 3 and 4 respectively, and
since they are two-dimensional structures, it is easy to split them vertically or horizontally into two connected halves,
see Fig. 9 for the arrangement of qubits.

Appendix C: Estimates on the number of PPTT F2Q mappings

In this section, we estimate the number of possible PPTT F2Q mappings for a particular hardware connectivity
graph G. Two scenarios will be considered: in the first, we will assume G is a complete graph; in the second, we will
assume the maximum degree is bounded by 3.
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FIG. 8. A visualization of the proof presented in in Theorem B.3. We start with the F2Q mapping which is fully on W (top
left), and we wish to obtain the F2Q mapping as on top right. This can be done in three steps as depicted below, where the
green nodes are nodes that are already in the correction location in the tree, and the orange ones are yet-to-be-moved nodes.

a. A complete graph G Let n be the number of modes, and Q be the number of qubits. First, note that mode
associations and braiding can be chosen arbitrarily, giving us 2nn! possibilities. Now, let’s count the number of
ternary trees available. Starting with a root, we can attach a new node to any of its 3 possible children. Then
we can attach a new leaf in 5 possible ways, and so on. In total, the number of ordered ternary trees is at most∏n

i=1(2i − 1) = (2n − 1)!! = (2n)!/(2nn!). Additionally, we can assign any of the separately chosen
(
Q
n

)
physical

qubits and assign them to nodes in any of n! ways. Note that with the procedure above, some ternary trees can be
constructed in more than one way. This gives us an upper bound on the number of PPTT F2Q mappings as

2nn!

(
Q

n

)
n!
(2n)!

2nn!
= n!(2n)!

(
Q

n

)
≤ n!(2n+ 1)!

Qn

n!
= Qn(2n+ 1)! = 2n(logQ+logn−log(e))+O(log(n)), (C1)

where, at the end, we used Stirling’s formula log(n!) = n log n− n log e+O(log n). Note that for indistinguishable
qubits, we can just choose Q = n, which simplifies the formula to

2n(2 logn−log(e))+O(log2(n)). (C2)

b. A bounded-degree graph G Here, we assume the maximum degree of the graph is d > 2. All the steps are as
before, except for how many trees we can find. In the i-th step, instead of having 2i − 1 possibilities of assigning a
node and an arbitrary physical qubit to be attached, we have to consider only those qubits which are neighbouring.

Therefore, first, we choose a root among one of Q qubits. Then, for one of the 3 legs, one of d neighbours of the root
is chosen. Since all the used nodes in the trees can have at most d− 1 neighbours, we can upper bound the number of
possibilities a physical qubit can be attached as the i-th node for i = 3, . . . , n as 3(d− 1)(i− 1), where 3 comes from
upper bounding the number of free legs for each node, d− 1 from the number of nodes that can be attached to each
node in the tree, and i− 1 from the total number of nodes in the current tree. Therefore, we can construct at most

Q · 3d ·
n∏

i=2

3(d− 1)(i− 1) = Q3nd(d− 1)n−1
n−1∏
i=1

i ≤ Q3ndn(n− 1)!. (C3)

Thus, the total number of PPTT F2Q mappings is

Q3ndn(n− 1)!2nn! ≤ Q(6d)n(n!)2 = 2n(2 logn+log(6d/e2))+O(log(Qdn)), (C4)

where we again used Stirling’s formula. Note that the dependency on the number of qubits Q is essentially lost,
suggesting that for bounded-degree graphs like the heavy hexagonal with d = 3 or 2D grid with d = 4, the number of
F2Q mappings is not significantly larger (if larger at all) than for the complete graphs with indistinguishable qubits.
Note that here, all the qubits are assumed to be indistinguishable, so apart from overestimating the number of trees
in Eq. (C3), we did not account for possible isomorphism between ternary trees. Furthermore, for heavy-hexagonal
trees, many of the nodes have a degree of 2, which further decreases the number of different PPTT F2Q mappings.
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Appendix D: Simulation data and Results

FIG. 9. Figure (a) illustrates the topology of the IBM Washington device, and (b) is the Google Sycamore. CNOT gates
between qubits are allowed only along the edges of the graphs in these devices.

FIG. 10. Convergence against ADAPT-VQE iterations to within 10−3 Hartree energy error of the exact ground-state energy.
The number of iterations is equivalent to the number of variational parameters in the ansatz.
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Molecule Pool Initial MS TC MS PC TC PC

LiH Majoranic 154 78 78 44 40

N2 Majoranic 398 250 250 194 194

BeH2 Majoranic 962 554 554 440 438

H6 Majoranic 2398 2186 2186 1846 1836

C6H8 Majoranic 274 166 166 122 124

C8H10 Majoranic 548 422 422 352 350

LiH Fermionic 158 108 110 98 106

N2 Fermionic 452 334 342 326 354

BeH2 Fermionic 580 356 356 378 410

H6 Fermionic 1660 1452 1468 1442 1538

C6H8 Fermionic 362 262 272 276 296

C8H10 Fermionic 564 436 444 474 502

TABLE II. Full connectivity results for various configurations of the treespilation algorithm. Mode Shuffling (MS) refers to a
scenario where the mapping tree is fixed as JW, and the assignment of Fermionic modes to qubit modes is optimized. This
allows us to leverage the efficient circuit representation of the excitation operators presented in [31]. Pauli Cost (CP) and
Transpiler Cost (TC) represent the possible cost functions employed. The last two columns labelled PC and TC display the
results when full treespilation is applied with the labelled cost function. The lowest CNOT counts are displayed in bold.

Molecule Pool Initial MS TC MS PC CP TC CP PC NCP TC NCP PC

LiH Majoranic 198 95 142 72 80 80 80

N2 Majoranic 519 335 428 274 286 264 298

BeH2 Majoranic 1438 833 964 612 682 640 698

H6 Majoranic 3681 3334 3216 2234 2352 2216 2374

C6H8 Majoranic 356 212 232 150 150 152 176

C8H10 Majoranic 750 587 690 430 458 420 466

LiH Fermionic 325 186 223 148 148 174 169

N2 Fermionic 1001 696 852 641 706 689 710

BeH2 Fermionic 1289 729 1012 937 870 949 754

H6 Fermionic 3802 3359 3457 3386 3625 3490 3389

C6H8 Fermionic 804 532 642 528 523 559 636

C8H10 Fermionic 1227 914 1300 1201 1071 1291 1080

TABLE III. Sycamore connectivity results for various configurations of the treespilation algorithm. Connectivity and Non-
connectivity Preserving (CP and NCP) settings, where the algorithm searches inside, and outside the space of connected
subtrees of the device, respectively, are displayed.
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Molecule Pool Initial MS TC MS PC CP TC CP PC NCP TC NCP PC

LiH Majoranic 271 133 162 104 108 104 102

N2 Majoranic 665 476 496 366 350 368 368

BeH2 Majoranic 1917 1183 1154 824 862 858 830

H6 Majoranic 5261 4365 3826 2930 2956 2958 2938

C6H8 Majoranic 490 278 270 214 202 210 210

C8H10 Majoranic 943 792 740 566 598 566 610

LiH Fermionic 463 273 287 235 224 257 258

N2 Fermionic 1585 1006 1149 1123 1168 1128 1162

BeH2 Fermionic 2059 1013 1206 1297 1232 1175 1295

H6 Fermionic 5783 4888 5891 5514 5773 5727 5432

C6H8 Fermionic 1276 770 854 827 849 909 924

C8H10 Fermionic 1898 1358 1403 1592 1707 1660 1909

TABLE IV. Eagle connectivity results for various configurations of the treespilation algorithm

TABLE V. Transpilation passes used for different pools. The Efficient Circuits pass (ECP) employs circuit representations of
the Fermionic pool in the JW encoding and the QEB pools as introduced in [65]. When possible, this pass is used as we found
it more efficient than the TKET pass that utilizes advanced compilation techniques from [66]. This includes the use of ECP for
the ansatz produced by MS. The Qiskit pass uses the qiskit transpiler with optimisation level 3 and is employed in all cases to
allow CNOTs cancellation and map the circuit to the device on LC for QEB and qubit pools. The Staircase pass involves the
standard approach of compiling exponentiated Pauli strings into a “staircase” of CNOTs. The Treespilation pass encompasses
novel mapping optimization techniques described in this paper. The Steiner pass is exclusively used to compile strings resulting
from the LC Treespilation strategy. Treespilation is not applicable for QEB and qubit pools due to the operators not having
an exact Fermionic representation.

Passes on Full Connectivity Passes on Limited Connectivity

Pool Initial Final Inital Final

Fermionic
1. ECP

2. Qiskit

1. Treespilation

2. ECP or TKET

3. Qiskit

1. ECP

2. Qiskit

1. Treespilation

2. ECP or TKET

3. Qiskit

Majoranic
1. Staircase

2. Qiskit

1. Treespilation

2. Staircase

3. Qiskit

1. Staircase

2. Qiskit

1. Treespilation

2. Steiner

3. Qiskit

QEB
1. ECP

2. Qiskit
Not applicable

1. ECP

2. Qiskit
Not applicable

Qubit
1. Staircase

2. Qiskit
Not applicable

1. Staircase

2. Qiskit
Not applicable
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Molecule Basis
Active Space

(No. Electrons, No. Orbitals)

Groundstate energy

(Hartree)

Cartesian Geometry

(Angstrom)

LiH STO-3G (4, 6) -8.654854
L 0.000 0.000 0.000

H 0.000 0.000 2.000

N2 STO-3G (6, 6) -11.402054
N 0.000 0.000 0.000

N 0.000 0.000 1.098

BeH2 STO-3G (6, 7) -17.006486

H 0.000 0.000 0.000

B 0.000 0.000 2.700

H 0.000 0.000 5.400

H6 STO-3G (6, 6) -6.064793

H 0.000 0.000 0.000

H 0.000 0.000 1.500

H 0.000 0.000 3.000

H 0.000 0.000 4.500

H 0.000 0.000 6.000

H 0.000 0.000 7.500

C6H8 cc-pVDZ (6, 6) -5.797646

H 1.488 1.809 0.000

C 0.401 1.860 0.000

C 0.196 3.053 0.000

H 0.375 3.974 0.000

H 1.277 3.142 0.000

C 0.301 0.600 0.000

H 1.389 0.645 0.000

C 0.301 0.600 0.000

H 1.389 0.645 0.000

C 0.401 1.860 0.000

C 0.196 3.053 0.000

H 1.488 1.809 0.000

H 0.375 3.974 0.000

H 1.277 3.142 0.000

C8H10 cc-pVDZ (8, 8) -8.584465

H 1.477 3.061 0.000

C 0.390 3.094 0.000

C 0.226 4.279 0.000

H 0.331 5.208 0.000

H 1.309 4.351 0.000

C 0.336 0.633 0.000

H 1.379 1.849 0.000

C 0.291 1.825 0.000

H 1.425 0.614 0.000

C 0.336 0.633 0.000

C 0.291 1.825 0.000

H 1.425 0.614 0.000

H 1.379 1.849 0.000

C 0.390 3.094 0.000

C 0.226 4.279 0.000

H 1.477 3.061 0.000

H 0.331 5.208 0.000

H 1.309 4.351 0.000

TABLE VI. Data for the molecules studied in this paper.


