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Abstract4

Quantum computation leverages the use of quantumly-controlled conditionals in order to achieve5

computational advantage. However, since the different branches in the conditional may operate on6

the same qubits, a typical approach to compilation involves performing the branches sequentially,7

which can easily lead to an exponential blowup of the program complexity. We introduce and study a8

compilation technique for avoiding branch sequentialization in a language that is sound and complete9

for quantum polynomial time, improving on previously existing polynomial-size bounds and showing10

the existence of techniques that preserve the intuitive complexity of the program.11
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1 Introduction15

Quantum computing is an emerging paradigm of computation where quantum physical16

phenomena, such as entanglement and superposition, are used to obtain an advantage over17

classical computation. A testament to the richness of the field is the variety of computational18

models: quantum Turing machines [3], quantum circuits [18, 16], measurement-based quantum19

computation [4, 6], linear optical circuits [13], among others. Some of these models have20

been shown to be equivalent in terms of computational power and complexity. For instance,21

Yao’s equivalency result [18] shows that polynomial-time quantum Turing machine are22

computationally equivalent to uniform and poly-size quantum circuit families.23

A lot of effort has been put on developing high-level quantum programming languages to24

allow programmers to abstract themselves from the technicalities of these low-level models.25

Towards that end, several verification techniques such as type systems [9] or categorical26

approaches for reasoning on programs semantics [2, 11] have been studied and developed to27

ensure the physical reality of compiled programs, for example, by ensuring that it preserves28

the main properties of quantum mechanics such as no-cloning theorem [1] or unitarity [8].29

An important line of research in this area involves checking polytime termination of quantum30

programs [5, 17, 10].31
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Figure 1 Classical vs.
quantum branching.

By Yao’s Theorem, this property implies the feasibility of32

the corresponding quantum circuit by ensuring that its size is33

polynomially bounded in the program input size. However, there34

are still quite a few obstacles to the full use of these techniques.35

In particular, designing efficient compilation strategies is not36

trivial [10].37

A prominent example is the time complexity of quantum38

branching in programs, i.e., when the flow in a loop or in a39

conditional is determined upon the state of a qubit. In the40

classical setting, the cost of branching is the maximum cost41

between the two branches (Figure 1). However, this is not necessarily the case in the42

quantum setting, as a consequence of no-cloning: in a quantum circuit, the two branches may43

1 Mário Silva will present this work if selected.
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contain operations on the same qubits, and thus require an implementation in series. This44

results in a circuit whose total depth is the sum of the depths of the two branches as illustrated45

by Figure 1. In [19], while trying to encode efficient operations over quantum data structures,46

the authors encounter this problem which they have coined branch sequentialization. While47

the authors provide a heuristic for avoiding branch sequentialization, it is only applicable48

in a few precise examples. Given the importance of preserving the time complexity of a49

program in its circuit implementation, there is an interest in discovering general techniques50

that avoid the problem of branch sequentialization altogether.51

Motivating Example. Consider the program PAIRS defined in Figure 2. The procedure52

pairs takes as input a sorted set q̄ of qubits (i.e., a collection of pairwise distinct qubits)53

on which it will perform operations. By language design, pairs immediately terminates54

whenever q is empty. First, pairs checks that the number of qubits in q̄, given by its size ∣q̄∣,55

is larger than 1 to enter the recursive case, otherwise it applies a NOT gate to the remaining56

qubit (line 9). On line 3, the program will branch depending on the state q̄[1, 2] of the first57

two qubits in q̄. Out of all four cases (lines 4-7), pairs only performs an operation when the58

first two qubits are in state ∣00⟩ or ∣11⟩, in which case it performs a recursive call on q̄⊖ [1, 2],59

the sorted set q̄ where the first and second qubits have been removed.60

1 decl pairs(q̄){
2 if ∣q̄∣ > 1 then
3 qcase q̄[1, 2] of {
4 00→ call pairs(q̄ ⊖ [1, 2]);
5 01→ skip;
6 10→ skip;
7 11→ call pairs(q̄ ⊖ [1, 2]);
8 }
9 else q̄[1] ∗= NOT;}

10 ∶∶ call pairs(q̄);

Figure 2 Branching program PAIRS.

With x ∈ {0, 1}∗ and y ∈ {0, 1}, given the61

input state ∣xy⟩, pairs will apply a NOT62

gate to y if and only if x is a string consisting63

only of sequences of 00 and 11. Put another64

way, pairs encodes a unitary transformation65

that inverts the state of the last qubit of an66

input when x belongs to the regular language67

defined by (00 ∣ 11)∗.68

Since pairs performs at most one call69

per branch, and consumes 2 qubits from its70

input while doing so, we conclude that its71

runtime complexity is bounded linearly.72

Let us now turn to finding a circuit im-73

plementation for the recursive case of pairs. Consider the two compilation strategies (a)74

and (b) shown in Figure 3. While Strategy (a) could be considered the more direct approach75

to building the circuit, at each recursive call the size of the circuit for pairs is the sum of76

the sizes of each branch. On the other hand, while the strategy in (b) requires the creation77

of an ancilla and the use of extra Toffoli gates, it only requires the implementation of one call78

to pairs. As a consequence, the strategies (a) and (b) result in circuits of depth Θ(∣q̄∣2∣q̄∣)79

and Θ(∣q̄∣), respectively, showing how implementing the branches sequentially can result in80

an exponential blowup in circuit size. It is simple enough to find a compilation strategy that81

prevents the duplication of pairs in the recursive case. However, this becomes much less82

trivial once we consider programs with more complex recursive calls.83

Contribution. In this paper, we study the problem of branch sequentialization and solve it in84

the case of quantum polynomial time, in the following way:85

We identify a programming language fragment bfoq (for Basic foq) that is sound86

and complete for quantum polynomial time (Theorem 9). That is, any bfoq program87

computes a function in fbqp, the class of functions computable in polynomial time88

by a quantum Turing machine with bounded error. Conversely, any function in fbqp89

can be computed by a bfoq program. bfoq is a strict but expressive subset of the90

pfoq programming language of [10] whose expressive power is illustrated through many91
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Figure 3 Compilation strategies: branch sequentialization (a) vs optimized approach (b).

examples (see Table 1);92

We introduce a compilation strategy compile+ from pfoq to quantum circuits based on93

two subroutines compr+ (Algorithm 1) and optimize+ (Algorithm 2): while compr+94

just generates the compiled circuit by a simple structural induction on program statements,95

optimize+ perform some optimization by merging (recursive) procedure calls in different96

branches in the program.97

We show that the compile+ is sound, i.e., the generated circuit fairly simulates the input98

program: this correctness result lies on the orthogonality of the control structures used99

in the optimize+ subroutine (Lemma 11).100

On pfoq programs, we exhibit a direct improvement on size complexity of the generated101

circuit with respect to the compilation algorithm studied in [10] (Theorem 12).102

We show that, on bfoq programs, compile+ produces circuits whose size is asymptotically103

bounded by their level (Theorem 13), i.e., by the maximal number of consecutive procedure104

calls in all branches (including quantum ones) of a program execution, thus avoiding105

branch sequentialization on a sound and complete language for quantum polynomial time.106

Related work. Resource optimization in quantum computing is a well-studied subject for low107

level computational models such as quantum circuits or ZX-diagrams: in this constant-depth108

scenario, (i.e., taking a specific and fixed circuit of constant size and, thus, constant depth),109

is it possible to reduce its number of gates [15, 14] (or at least its number of non-Clifford110

gates [12, 7]), with techniques such as gate substitution, graph-rewriting, among others.111

Resource optimization for high-level quantum programs is still a relatively undeveloped112

research area as it involves the asymptotic consideration of families of circuits. Such113

an issue has strong connections with programming language-based characterizations of114

quantum polynomial time classes [17, 5, 10] as, by design, their set of programs is sound and115

complete for uniform families of quantum circuits of polynomial size, as per Yao’s equivalency116

theorem. While [17, 5] provide non-constructive proofs of the existence of quantum circuits of117

polynomial size, [10] introduces a programming language that avoids an exponential blowup118

in the complexity of recursive (quantum) branching with a direct compilation strategy119

for ensuring polysized circuit representations. However this strategy still performs branch120

sequentialization and generates polynomial bounds whose degree is not accurate.121
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(Programs) P(q̄) ≜ D ∶∶ S
(Procedure declarations) D ≜ ε ∣ decl proc[x](q̄){S}, D
(Statements) S ≜ skip; ∣ q̄[i] ∗= Uf(j); ∣ S S ∣ if b then S else S

∣ qcase q̄[i] of {0→ S,1→ S} ∣ call proc[i](s);

Figure 4 Syntax of foq programs.

2 First-Order Quantum Programming Language122

We consider the foq (First-Order Quantum) programming language with quantum control,123

introduced in [10] to characterize quantum polynomial time. A complete account of its124

syntax and its semantics is given in Appendix A.125

2.1 Syntax126

A foq program P ≜ D ∶∶ S is defined in Figure 4 by a list of procedure declarations D and127

a program statement S . The language include 4 basic datatypes for expressions. Sorted128

set expressions s are either variables q̄, the empty sorted set nil, or s⊖ [i], the sorted set s129

where the i-th element has been removed. Intuitively, a sorted set is a list of unique (i.e.,130

non-duplicable) qubit pointers. Integer expressions, noted i, j, are either an integer variable x,131

a constant n, an addition by a constant i±n or the size of a sorted set ∣s∣. Boolean expressions132

b are defined in a standard way using boolean operators and arithmetic operators, e.g.,133

i > j. Finally, qubit expressions are of the shape s[i] which denotes the i-th qubit pointed134

to in s. s[i1, . . . , in] is a shorthand for s[i1], . . . , s[in]. Finally, we also allow for the syntactic135

sugar on sorted state of pointing to the n-th last qubit in the set, by defining for any n ≥ 1,136

q̄[−n] ≜ q̄[∣q̄∣ − n + 1].137

A procedure of name proc is defined by a procedure declaration decl proc[x](q̄){Sproc}138

which takes a sorted set q̄ and an (optional) integer x as input parameters and executes the139

procedure statement Sproc. Let Procedures be an enumerable set of procedure names. We140

will write S instead of Sproc when the procedure is clear from context, and we denote by141

proc ∈ P the fact that proc appears in D. Given two statements S,S′, S ∈ S′ denotes the fact142

that S is a substatement of S′. Furthermore, we have that proc ∈ S holds if there are i and s143

such that call proc[i](s); ∈ S.144

Statements include the no-op instruction, unitary operations, sequences, classical and145

quantum conditionals, and procedures calls. Of these, we highlight the quantum condi-146

tional qcase q̄[i] of {0 → S0,1 → S1}, which allows branching by executing statements S0147

and S1 in superposition according to the state of qubit q̄[i], and also the procedure call148

call proc[i](s);, which runs procedure proc with integer expression i and sorted set expression149

s, a list of unique qubit pointers. The quantum conditional can be extended to n qubits150

qcase q̄[i1, . . . , in] of {0n → S0n , . . . ,1n → S1n} in a standard way as used in Figure 2.151

In a statement q̄[i] ∗= Uf(j);, if the integer expression j evaluates to n, then the unit-152

ary operator JUf K(n) corresponding to the unary construct Uf(j) is applied to qubit q̄[i].153

For expressivity purposes, these constructs are parameterized by some polynomial-time154

approximable total function f ∈ Z → [0,2π) and some integer expression j. For example,155

the gates of the quantum Fourier transform can be defined by Rn ≜ JPhλx.π/2x−1
K(n) with156

JPhf K(n) ≜ ( 1 0
0 eif(n) ). Other basic unary gates are the NOT and the RY gate (see [10]).157

We also make use of some syntactic sugar to describe statements encoding constant-time158
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quantum operations. For instance, the CNOT , SWAP , and Toffoli gates can be defined by:159

160 CNOT(q̄[i], q̄[j]) ≜ qcase q̄[i] of {0→ skip; ,1→ q̄[j] ∗= NOT}161

SWAP(q̄[i], q̄[j]) ≜ CNOT(q̄[i], q̄[j]) CNOT(q̄[j], q̄[i]) CNOT(q̄[i], q̄[j])162

TOF(q̄[i], q̄[j], q̄[k]) ≜ qcase q̄[i] of {0→ skip; , 1→ CNOT(q̄[i], q̄[j])}163164

We define notions of rank that provide quantitative information on the recursion level of165

a given program or procedure.166

▶ Definition 1 (Rank). Given a foq program P, the rank of a procedure proc in P, denoted167

rkP(proc), is defined as follows:168

rkP(proc) ≜

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if ¬(∃proc′, proc ⪰P proc′),
maxproc⪰Pproc′{rkP(proc′)}, if ∃proc′, proc ⪰P proc′ ∧ ¬(proc ∼P proc),
1 +maxproc≻Pproc′{rkP(proc′)}, if proc ∼P proc,

169

where max(∅) ≜ 0. The rank of a program is defined as the maximum rank among all170

procedures, i.e., for a program P ≜ D ∶∶ S, we have that rk(P) ≜ maxproc∈D rkP(proc).171

▶ Example 2. The program PAIRS given in Figure 2 has rank 1, since rk(PAIRS) ≜172

maxproc∈PAIRS rkP(proc) = rk(pairs) = 1.173

2.2 Semantics174

Let H2n denote the Hilbert space of n qubits C2n , L(N) denote the set of lists of natural175

numbers, and P(N) denote the powerset of natural numbers.176

Expressions. For K ∈ {N,Z,C2×2,L(N)}, we write (e, l) ⇓K v when the expression e evaluates177

to the value v ∈ K under the context l ∈ L(N). The context l is just the sorted set of qubit178

pointers into consideration when evaluating e. For example, we have that (q̄[2], [1,4,5]) ⇓N179

4 (the second qubit is of index 4), (q̄[4], [1,4,5]) ⇓N 0 (index 0 is used for error), and180

(q̄ ⊖ [3], [1,4,5]) ⇓L(N) [1,4] (the third qubit has been removed).181

Statements. Let Confn ≜ (Statements∪{⊺,�})×H2n×P(N)×L(N) be the set of configurations182

of n qubits. In a configuration c ≜ (S, ∣ϕ⟩ ,S, l), S is the statement to be executed, ∣ϕ⟩ is the183

quantum state, S is a set of accessible (pointers to) qubits and l is the list of qubit pointers184

under consideration. In case of error the program exits and the two special symbols ⊺ and �185

are markers for success (termination) and failure (error), respectively. The set S of accessible186

qubits is used to ensure that unitary operations on qubits can be physically implemented. For187

example, statements S0 and S1 of a quantum branch qcase q̄[i] of {0→ S0,1→ S1} cannot188

access q̄[i] to ensure that the operation can be physically implemented by a controlled-circuit.189

The big-step semantics ⋅ ⋅Ð→ ⋅ is defined as a relation in ⋃n∈N Confn ×N ×Confn. When
c

mÐ→ c′ holds the level m is an integer corresponding to the maximum number of procedure
calls performed over each (condition and quantum) branch during the evaluation of c. More
formally, the level of a program P = D ∶∶ S on n qubits, denoted levelP(n), is defined by

levelP(n) ≜ max{m ∈ N ∣ ∃ ∣ϕ⟩ , ∣ϕ′⟩ ∈ H2n , (S, ∣ϕ⟩ ,Sn, ln)
mÐ→ (⊺, ∣ϕ′⟩ ,Sn, ln)},

with Sn ≜ {1, . . . , n} and ln ≜ [1, . . . , n].190

▶ Example 3. Consider the program PAIRS of Figure 2. We have that each procedure call191

removes two qubits until it reaches a case of input size ∣q̄∣ either 1 or 0 (depending on if n is192

odd or even) and for both sizes there are no more procedure calls. On an empty sorted set,193

the program exits after the first call. Then, levelPAIRS(n) = ⌊n
2 ⌋ + 1 = O(n).194
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2.3 Polytime fragments of FOQ195

In [10], the polynomial-time fragment of foq, denoted pfoq, is defined by placing two196

restrictions on procedure calls: a well-foundedness criterion for termination and a restriction197

on the number of admissible recursive calls per (classical or quantum) branch to avoid198

exponentiation.199

PFOQ and Basic FOQ. Given a program P ≜ D ∶∶ S, the call relation →P ⊆ Procedures ×200

Procedures is defined for any two procedures proc1, proc2 ∈ S as proc1 →P proc2 whenever201

proc2 ∈ Sproc1 . The partial order ⪰P is then the transitive closure of →P, and ∼P denotes the202

equivalence relation where proc1 ∼P proc2 if proc1 ⪰P proc2 and proc2 ⪰P proc1 both hold.203

call proc′ ∈ Sproc is a recursive procedure call whenever proc ∼P proc′. The strict order ≻P204

is defined as proc1 ≻P proc2 if proc1 ⪰P proc2 and proc1 /∼P proc2 both hold.205

A program P is in wf if it satisfies the constraint that each recursive procedure call206

removes at least one qubit in its parameter. Programs in wf are terminating (well-founded)207

but still allow the programmer to write programs with exponential runtime. To avoid such208

programs, we use the notion of width of a procedure proc in a program P, noted widthP(proc),209

defined inductively on procedure declarations by counting the number of recursive calls in210

the procedure body, taking the maximum of each (classical or quantum) conditional.211

▶ Definition 4 (Width of a procedure). Given P ∈ foq and proc ∈ P, the width of proc in P,212

noted widthP(proc), is defined as widthP(proc) ≜ wproc
P (Sproc), where wproc

P (S) is the width213

of the procedure proc in P relative to statement S, defined inductively as:214

wproc
P ( skip; ) = wproc

P (q ∗= Uf(i); ) ≜ 0,215

wproc
P (S1 S2) ≜ wproc

P (S1) +wproc
P (S2),216

wproc
P (if b then Strue else Sfalse) ≜ max(wproc

P (Strue),wproc
P (Sfalse)),217

wproc
P (qcase q of {0→ S0,1→ S1}) ≜ max(wproc

P (S0),wproc
P (S1)),218

wproc
P (call proc′[i](s); ) ≜

⎧⎪⎪⎨⎪⎪⎩

1 if proc ∼P proc′,
0 otherwise.

219

220

Let width≤1 be the set of programs with procedures of width at most 1. Finally, define221

pfoq ≜ foq∩wf∩width≤1. We will show that pfoq can be restricted to a fragment, denoted222

bfoq (for Basic foq), that is still complete for polynomial time and where the compilation223

procedure conserves the intuitive complexity of the program. Let basic denote the set of224

programs where i) procedures do not use classical inputs ii) procedure call parameters are225

restricted to sorted set variables q̄ or to a fixed sorted set s (s is fixed for each bfoq program).226

Then, we define bfoq ≜ basic ∩ pfoq. It trivially holds that bfoq ⊊ pfoq ⊊ foq.227

▶ Example 5 (Quantum Full Adder ∈ bfoq). Let ADD encode the unitary transformation
such that, for a, b ∈ {0, 1}n and cin, cout ∈ {0, 1}, ADD performs the following transformation,
where η represents the n least significant bits of (a + b + cin).

ADD ∣anbn . . . a1b10ncin⟩ ≜ ∣anbn . . . a1b1coutη1 . . . ηn⟩ ,

where cin and cout encode the carry-in and carry-out values, respectively. The operator228
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ADD corresponds to the circuit in Figure 6 and is described by the program FA below.229

1 decl fullAdder(q̄){230

2 if ∣q̄∣ > 3 then /* q̄[1] = a, q̄[2] = b, q̄[−2] = ∣0⟩ and q̄[−1] = cin */231

3 TOF(q̄[1], q̄[2], q̄[−2])232

4 CNOT(q̄[1], q̄[2])233

5 TOF(q̄[2], q̄[−1], q̄[−2]) /* cout = (a ⋅ b) ⊕ (cin ⋅ (a⊕ b)) */234

6 CNOT(q̄[2], q̄[−1]) /* η = a⊕ b⊕ cin */235

7 CNOT(q̄[1], q̄[2])236

8 call fullAdder(q̄ ⊖ [1, 2,−1]);237

9 else skip;},238

10 ∶∶ call fullAdder(q̄);239240

It holds that FA ∈ foq∩wf and that widthFA(fullAdder) = 1. Therefore, FA ∈ pfoq. Also,241

FA is clearly in bfoq as there is only one recursive call and no integer parameter.242

▶ Example 6 (Quantum Fourier Transform ∈ bfoq). The quantum Fourier transform can be243

described by the program QFT below244

1 decl qft(q̄){ 11 decl rot(q̄){245

2 q̄[1] ∗= H; 12 if ∣q̄∣ > 1 then246

3 call rot(q̄); 13 qcase q̄[−1] of {247

4 call shift(q̄); 14 0→ skip;248

5 call qft(q̄ ⊖ [−1]);}, 15 1→ q̄[1] ∗= Phλx.π/2x−1
(∣q̄∣);}249

16 call rot(q̄ ⊖ [−1]);250

6 decl shift(q̄){ 17 else skip;}251

7 if ∣q̄∣ > 1 then252

8 SWAP(q̄[1], q̄[−1]) 18 ∶∶ call qft(q̄);253

9 call shift(q̄ ⊖ [−1]);254

10 else skip;},255256

The program consists of three procedures, qft, shift, and rot, and is in pfoq since it is257

in wf and widthQFT(qft) = widthQFT(shift) = widthQFT(rot) = 1. All procedure calls are258

performed on the set q̄ or q̄⊖ [−1], and therefore the program is also in basic. This program259

can be compiled to the circuit Figure 5 for input size 4, implementing the quantum Fourier260

transform. This circuit differs from (but is equivalent to) the standard implementation of261

the quantum Fourier transform. This is due to some of the restrictions put in bfoq. The262

standard circuit can be obtained directly through compilation of a pfoq program.263

Properties of PFOQ and BFOQ programs. pfoq programs have a consecutive number264

of procedure calls in the distinct branches of their execution (i.e., level) that is bounded265

polynomially in the input size (number of qubits). The degree of the polynomial can be266

obtained from the rank, which can be inferred syntactically.267

▶ Lemma 7 (Polynomial level [10]). For any pfoq program P, levelP(n) = O(nrk(P)).268

The set pfoq of programs was shown to be sound and complete for the class fbqp, of269

function computable in quantum polynomial time [10].270

▶ Theorem 8 (pfoq-Soundness and Completeness [10]). For every function f in fbqp, there271

is a pfoq program P that computes f with probability 2
3 using at most a polynomial number272

of extra ancilla. Conversely, given a program P in pfoq , if P computes f ∶ {0, 1}∗ → {0, 1}∗,273

with probability p ∈ ( 1
2 ,1] then f ∈ fbqp.274
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rot shift

q̄[1] H R4 R3 R2 H R3 R2 H R2 H

q̄[2]

q̄[3]

q̄[4]

Figure 5 Circuit for the QFT as defined by the program in Example 6.

a3 a3
b3 b3
a2 a2
b2 b2
a1 a1
b1 b1
∣0⟩ cout
∣0⟩ η1
∣0⟩ η2
cin η3

Figure 6 Quantum Full Adder circuit (Example 5) for input size 10.

Being a strict subset of pfoq, bfoq is trivially sound. Surprisingly, it is also complete.275

▶ Theorem 9 (bfoq-Soundness and Completeness). Theorem 8 holds for bfoq.276

Proof. Soundness is trivial since bfoq is contained in pfoq, and completeness is given277

analogously to the proof of [10, Theorem 5], by noticing that all programs constructed in the278

proof are also contained in bfoq. ◀279

3 Circuit compilation280

In this section, we introduce a compilation strategy for pfoq programs that strictly improves281

on the compilation algorithm of [10]. We also show that, in the bfoq fragment, circuit282

complexity scales in such a way that the cost of branching is the maximum cost of each283

branch, thereby avoiding branch sequentialization.284

3.1 A new compilation algorithm285

The compilation algorithm compile+ takes as input a program P and a natural number n
(the number of input qubits) and returns a circuit implementation of P for an input size of n
qubits. compile+ is defined by its subroutine compr+ (Algorithm 1) in the following way:

compile+(P, n) ≜ compr+(P, [1, . . . , n], ⋅,{}),

where P is the program to be compiled, [1, . . . , n] is list of qubit pointers (initially all qubits),286

⋅ is an empty control structure, and {} an empty dictionary. A control structure is a partial287

function in N→ {0, 1} mapping qubit pointers to their control values in a quantum case. For288

n ∈ N and k ∈ {0, 1}, cs[n ∶= k] is the control structure obtained from cs by setting cs(n) ≜ k.289

We denote by dom(cs) the domain of the control structure. For a given x ∈ {0,1}⋆, we say290

that state ∣x⟩ satisfies cs if, ∀n ∈ dom(cs), cs(n) = k implies that xn = k. The purpose of291

control structures in the algorithm is to preserve the information of each quantum branch292

and to allow for merging using ancillas.293
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Algorithm 1 (compr+)
Input: (D ∶∶ S, l, cs, Anc) ∈ Programs × L(N) × (N→ {0, 1})× D

1: if S = skip; then
2: C ← 1 ▷ Identity circuit
3:
4: else if S = s[i] ∗= Uf(j); and (s[i], l) ⇓N n and (Uf(j), l) ⇓C2×2 M then
5: C ←M(cs, [n]) ▷ Controlled gate
6:
7: else if S = S1 S2 then
8: C ← compr+(D ∶∶ S1, l, cs,Anc) ○ compr+(D ∶∶ S2, l, cs,Anc) ▷ Composition
9:

10: else if S = if b then Strue else Sfalse and (b, l) ⇓B b then
11: C ← compr+(D ∶∶ Sb, l, cs,Anc) ▷ Conditional
12:
13: else if S = qcase s[i] of {0→ S0,1→ S1} and (s[i], l) ⇓N n then ▷ Quantum case
14: C ← compr+(D ∶∶ S0, l, cs[n ∶= 0],Anc) ○ compr+(D ∶∶ S1, l, cs[n ∶= 1],Anc)
15:
16: else if S = call proc[i](s); and (s, l) ⇓L(N) [ ] then
17: C ← 1 ▷ Nil call
18:
19: else if S = call proc[i](s); and (s, l) ⇓L(N) l′ /= [ ] and (i, l) ⇓Z n then▷ Procedure call
20: a← new ancilla()
21: Anc[proc′, n, ∣l′∣] ← (a, l′);
22: C ← optimize+(D, [(⋅[a = 1],Sproc{n/x})],proc, l′,Anc)
23: end if
24: return C

The aim of subroutine compr+ is just to generate the quantum circuit corresponding294

to P on n qubits inductively on the statement of P. When the analyzed statement is a295

(possibly recursive) procedure call, compr+ calls the optimize+ subroutine (Algorithm 2) to296

perform an optimization of the generated quantum circuit. optimize+ has the same inputs297

as compr+ with the addition of a list of controlled statements lCst and the name proc of298

the procedure under analysis. A controlled statement is defined as a pair (cs,S) where cs299

is a control structure and S is a foq statement. This will allow us to generate the circuit300

implementation of S (which may contain multiple gates) while keeping track of the branch301

on which it is implemented.302

The compilation algorithm compile+ is based on the process of merging procedure303

calls by reasoning about the orthogonality relations within the circuit. It is similar to the304

compilation algorithm compile of [10] based on the subroutines compr and optimize, with305

the differences highlighted in the code of Algorithms 1 and 2: optimize+ strictly improves306

on optimize (Theorem 12) by extending this analysis to procedures of different ranks.307

3.2 Soundness and optimization308

The correctness of optimize+ is a consequence of an orthogonality property between ele-309

ments of the circuit being compiled that remains invariant throughout the compilation. In310

Algorithm 2, a recursive procedure proc is compiled by generating three separate circuits CL,311

CM, and CR. The compilation process makes use of a list lCst of controlled statements which312
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Algorithm 2 (optimize+) Build circuit for recursive procedure proc
Inputs: (D, lCst, proc, l, Anc) ∈ Decl × L(Cst) ×Procedures × L(N) × D

1: CL ← 1; CR ← 1; CM ← 1; P← D ∶∶ skip;
2: while lCst ≠ [ ] do
3: (cs,S) ← hd(lCst); lCst ← tl(lCst)
4:
5: if S = S1 S2 then
6: Anc′ ← Anc.copy() /* create copy of ancilla dictionary */
7: if wproc

P (S1) = 1 then
8: lCst ← lCst@[(cs,S1)]; CM ← compr+(D ∶∶ S2, l, cs,Anc′) ○ CM
9: else

10: lCst ← lCst@[(cs,S2)]; CM ← compr+(D ∶∶ S1, l, cs,Anc′) ○ CM
11: end if
12: end if
13:
14: if S = if b then Strue else Sfalse and (b, l) ⇓B b then
15: if wproc

P (Sb) = 1 then
16: lCst ← lCst@[(cs,Sb)]
17: else
18: CM ← compr+(D ∶∶ Sb, l, cs,Anc) ○CM
19: end if
20: end if
21:
22: if S = qcase s[i] of {0→ S0,1→ S1} and (s[i], l) ⇓N n then
23: if wproc

P (S0) = 1 and wproc
P (S1) = 1 then

24: lCst ← lCst@[(cs[n ∶= 0],S0), (cs[n ∶= 1],S1)]
25: else if wproc

P (S1) = 0 then
26: lCst ← lCst@[(cs[n ∶= 0],S0)];
27: CM ← compr+(D ∶∶ S1, l, cs[n ∶= 1],Anc) ○CM
28: else if wproc

P (S0) = 0 then
29: lCst ← lCst@[(cs[n ∶= 1],S1)];
30: CM ← compr+(D ∶∶ S0, l, cs[n ∶= 0],Anc) ○CM
31: end if
32: end if
33:
34: if S = call proc′[i](s) and (s, l) ⇓L(N) l′ /= [ ] and (i, l) ⇓Z n then
35: if (proc′, n, ∣l′∣) ∈ Anc then
36: Let (a, l′′) = Anc[proc′, n, ∣l′∣] in
37: e← new ancilla(); /* compatible procedure already exists: merging case */
38: CL ← CL ○NOT (cs, e) ○NOT (⋅[e = 1], a) ○ SWAP (⋅[e = 1], l′, l′′);
39: CR ← SWAP (⋅[e = 1], l′′, l′) ○NOT (⋅[e = 1], a) ○NOT (cs, e) ○CR
40: else
41: a← new ancilla() /* no compatible procedure: create new ancilla */
42: Anc[proc′, n, ∣l′∣] ← (a, l′);
43: CL ← CL ○NOT (cs, a); CR ← NOT (cs, a) ○CR;
44: lCst ← lCst@[(⋅[a = 1],Sproc′{n/x})]
45: end if
46: end if
47: end while
48: return CL○ CM ○CR
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have not yet been compiled. Given a program P and an input procedure proc, the list lCst313

contains controlled statements (cs,S) such that wproc
P (S) = 1, whereas CM contains circuits314

for statements such that wproc
P (S) = 0 but that are nonetheless orthogonal to those in lCst, for315

which merging will be possible. Circuits CL and CR contain circuits for statements for which316

wproc
P (S) = 0 and that are not orthogonal to the elements of lCst. The circuit below pictures317

how the output circuit is generated from the circuits CL, CM, and CR and the list lCst.318

CL lCst CM CR319

The steps of optimize+ are depicted in Figure 7, where in each case we treat a controlled320

statement (cs,S) ∈ lCst. A gate placed inside the violet box denotes the new controlled321

statement that replaces (cs,S) in lCst. A gate placed inside a grey box indicates a circuit322

that is compiled and added to CM. The notation is agnostic to the precise placement of323

these objects within lCst and CM, making use of the orthogonality relation described in324

Lemma 11 which renders the choice inconsequential. Figures 7a, 7b, and 7c contain two325

circuits consisting of the different possible cases of compilation:326

In Figure 7a, we consider a sequence S1 S2. This includes the case where S2 is recursive327

(left) and the one where S1 is recursive (right). Given the width≥1 condition, there are328

no more cases.329

In Figure 7b, the case of classical control, we have the step where Sb contains a recursive330

call (above) and where it does not (below).331

For the case of quantum branching (Figure 7c), it is possible that only one of the two332

statements, say S0, contains a recursive call (left) and the case where both do (right).333

Finally, we consider the case of a procedure call. Either there is already a compatible334

procedure and merging is performed (Figure 7d) or a new ancilla is used to anchor the335

procedure (Figure 7e).336

We formalize orthogonality between controlled statements as follows.337

▶ Definition 10 (Orthogonality between control structures). We say that two control structures338

are orthogonal, also denoted cs ⊥ cs′, if ∃i ∈ N such that i ∈ dom(cs) ∩ dom(cs′) and where339

cs(i) + cs′(i) = 1.340

Hence, two control structures are orthogonal if there is no base state that satisfies them both.341

We now show that the steps of optimize+ respect an orthogonality invariant.342

▶ Lemma 11 (Orthogonality invariant). At each step of the subroutine optimize+, the list343

lCst and the circuit CM satisfy the following properties:344

1. All controlled statements in lCst are mutually orthogonal:345

∀(cs,S), (cs′,S′) ∈ lCst such that (cs,S) /= (cs′,S′), we have that cs ⊥ cs′.346

2. Any controlled statement in lCst commutes with any element of CM:347

∀(cs,S) ∈ lCst,∀M(cs′, [n]) ∈ CM we have that cs ⊥ cs′.348

Proof. We start optimize+ with a single procedure statement and an empty control structure,349

i.e. CM is empty and lCst = {(⋅,Sproc)}, in which case the lemma is clearly true.350

We now prove by induction that it is an invariant. Let (cs,S) ∈ lCst be the controlled351

statement being treated. If S = S1 S2, let wproc
P (S1) = 1 and wproc

P (S2) = 0. Then, (cs,S)352
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cs cs

S1 S2

cs cs

S1 S2

(a) S = S1 S2

cs

Sb

cs

Sb

(b) S = if b then S0 else S1 and (b, l) ⇓B b.

cs cs

n

S0 S1

cs cs

n

S0 S1

(c) S = qcase q of {0→ S0, 1→ S1} and (q, l) ⇓N n.

e

a

cs
↔ ↔

cs

(d) S = call proc′[i](s); (merging).

a

cs cs

Sproc’{n/i}

(e) S = call proc′[i](s); and (i, l) ⇓Z n (anchoring).

Figure 7 A step of the optimize+ subroutine.

is replaced with (cs,S1) in lCst and CM is unchanged – therefore, the invariant property353

remains true. The case where wproc
P (S1) = 0 and wproc

P (S2) = 1 is analogous.354

If S = if b then S0 else S1, then consider the case (b, l) ⇓B 0, where if wproc
P (S0) = 1 we355

have that (cs,S) is replaced with (cs,S0) in lCst and CM remains the same, and therefore356

the property remains true. If wproc
P (S0) = 0 we have that (cs,S) is removed from lCst and357

CM ← J(cs,S)K ○CM. By the induction hypothesis all other csi in lCst are orthogonal to cs358

and therefore the property is conserved. The same can be shown for the case of (b, l) ⇓B 1.359

If S = qcase s[i] of {0→ S0,1→ S1} with (s[i], l) ⇓N n, notice first that csi ⊥ csi′ implies360

both csi ⊥ csi′[n = 0] and csi ⊥ csi′[n = 1], and that clearly csi′[n = 0] ⊥ csi′[n = 1]. Then,361

all cases preserve the condition.362

If S = call proc′[i](s) with (s, l) ⇓L(N) l′ /= [ ] and (i, l) ⇓Z n, we consider two cases:363

(i) A corresponding ancilla a already exists (merging), which by the constraints of pfoq364

implies that ⋅[a = 1] ⊥ csi for all csi in lCst. Therefore, by the induction hypothesis,365

adding cs to a preserves the orthogonality conditions.366

(ii) No corresponding ancilla exists (anchoring), in which case the creation of the ancilla367

does not change the orthogonality between statements, as intended. ◀368

We now show that algorithm compile+ strictly improves on the asymptotic size of circuit,369

compared to the compile algorithm of [10].370
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▶ Theorem 12. For any pfoq program P, #compile+(P, n) = O(#compile(P, n)). Fur-371

thermore, there exist programs for which #compile+(P, n) = o(#compile(P, n)).372

Proof. The circuit size in both cases is asymptotically bounded by the number of ancillas373

created. Since we do more merging than before the result follows. Table 1 provides some374

examples to show the second claim. ◀375

▶ Theorem 13 (No branch sequentialization). For P ∈ bfoq and n ∈ N, #compile+(P, n) =376

O(levelP(n)).377

Proof. The theorem can be shown by structural induction on the program body, by checking378

that it is the case in each scenario that the circuit size scales with the level of the program.379

All cases are straightforward except the one of the quantum control case, which is proven at380

the end. The basic restrictions give us the following two properties during the compilation:381

(a) merging can be done in constant time, since there is no need for controlled-swap gates,382

and (b) a call to a recursive function only result in at most O(n) calls to procedures of the383

same rank with unique ancillas.384

We proceed by structural induction on the program body, considering that the statement385

is part of a procedure call for procedure proc.386

(S = skip; or S = q̄[i] ∗= U;) in this case we have that, levelP(n) = 0 and the the circuit is387

of constant size.388

(S = S1 S2) In this case, S1 and S2 are compiled in series (Figure 7a). The size of the389

circuit for S is then given by the sum of the sizes of the circuits of S1 and S2, and by390

definition the level of S is the sum of the levels.391

(S = if b then S0 else S1) Depending on the value of b the circuit for S either it392

corresponds to the circuit for S0 or S1. Therefore the size of the circuit is bounded by393

the maximum of between the two statements, as in the definition of level.394

(S = call proc[i](s);) This case also follows the definition of level since the circuit size is395

the one given inductively by the non-procedure-call operations (constant size) plus the396

circuit given by the procedure calls.397

Notice that, for all statements besides the qcase, the size of the circuit follows the398

definition of level. We check that the number of ancillas created for S is bounded by the399

maximum number of ancillas for S0 and S1 separately. To show this, we proceed by induction400

on the rank r of the procedure.401

The base case is given by (b), therefore we may consider r > 1. For the inductive case, we402

consider three possible scenarios:403

wP
proc(S0) = wP

proc(S1) = 0. Therefore, S0 and S1 contain only calls to procedures of rank404

strictly lower than r. This may only occur a constant number of times in the depth of405

a program, therefore we may simply consider the sum of the number of ancillas as a406

sufficient upper bound on the asymptotic number of ancillas for S.407

wP
proc(S0) = wP

proc(S1) = 1. In this case, S0 and S1 are of the same rank, r, and all408

their procedure calls may be merged. Therefore, the asymptotic number of such calls is409

bounded between the maximum between S0 and S1 (consider that, if there is no overlap410

between the ancillas needed, their number is still bounded linearly). Applying the IH on411

the procedures of rank r − 1 we obtain the desired result.412

wP
proc(S0) = 0 and wP

proc(S1) = 1. Therefore, S0 contains calls to procedures of rank r′ < r413

whereas S1 contains calls to procedures of rank r. The number of procedures of rank r′414

is bounded asymptotically by the maximum between those in S0 and S1, therefore we415

obtain our result. ◀416
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Circuit complexity

Problem Example [10] compile+

Full Adder Example 5 Θ(n) Θ(n)

Quantum Fourier Transform Example 6 Θ(n2) Θ(n2)

Palindromes Example 14 Θ(n) Θ(n)

Chained Substring Example 15 Θ(n3) Θ(n)

Sum(r), r ≥ 1 Example 18 Θ(nr) Θ(n)
Table 1 Circuit size complexity bounds given by the compilation strategy in [10] and compile+

described in this work. For all of these problems, we give the corresponding programs in bfoq.

4 Examples417

In this section, we provide several examples illustrating our results, including general examples418

on regular expressions. We show that any regular language can be decided by a bfoq program419

whose compiled quantum circuit of linear size (Theorem 17). A benchmark, illustrating the420

difference between our compilation algorithm and the one in [10], is provided in Table 1.421

▶ Example 14 (Palindromes). Consider the following bfoq program PALINDROME.422

1 decl palindrome(q̄){
2 if ∣q̄∣ > 2 then
3 qcase q̄[1, ∣q̄∣ − 1] of {
4 00→ call palindrome(q̄ ⊖ [1,−2]);
5 01→ skip;
6 10→ skip;
7 11→ call palindrome(q̄ ⊖ [1,−2]);
8 }
9 else q̄[−1] ∗= NOT;}

10 ∶∶ call palindrome(q̄);

PALINDROME ∈ wf since all recursive
procedure calls decrease the input sorted
set. Furthermore, at most one recurs-
ive call is done per branch, and therefore
PALINDROME ∈ width≤1 and so the pro-
gram is also in pfoq. Further checking that
all procedure calls in the program are either
of the form q̄ or q̄ ⊖ [1, ∣q̄∣ − 1], we conclude
that it is also in bfoq. We are therefore in
a position to apply Theorem 13.

423

424

Since rk(PALINDROME) = rkPALINDROME(palindrome) = 1, by Lemma 7, we obtain425

the conclusion that #optimize+(P, n) = O(n), i.e., the compilation procedure generates426

a circuit of size linear on the input. Indeed, for PALINDROME, compile+ generates the427

following circuit in the case where n is even:428

⋮ ⋮

⋮ ⋮

⋮ ⋮

∣0⟩⊗
n
2

q̄[1]
q̄[2]

q̄[ n
2 ]

q̄[ n
2 + 1]

q̄[n − 2]
q̄[n − 1]

q̄[n]

429
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The circuit makes use of n/2 ancillas that are reset to zero, only applying a NOT gate to430

q̄[n] if q̄[1, . . . , n − 1] forms a palindrome.431

▶ Example 15 (Chained substring). Let s0 = 001 and s1 = 11. Let L be the regular language432

defined by identifying strings containing an instance of s0 followed eventually by an instance433

of s1 in a word, i.e., the language defined by the regular expression ∗s0 ∗ s1∗. We can define434

a bfoq program (Appendix C) that detects inputs in L using the following call graph:435

f0 f1 f2 f3 f4 ⊕

1
0

1

0
0

1
0

1

0

1

436

The program has as body a procedure call call f0(q̄); and consists of 5 procedures fi and a437

terminating procedure ⊕. An arrow s→b t with b ∈ {0,1} indicates a procedure call of the438

form call t(q̄⊖ [1]); appears in the body of procedure s done in a branch with q̄[1] in state b.439

The maximum rank of a procedure is 3 (for f0 and f1) and the circuit obtained by the440

technique in [10] gives a circuit of size Θ(n3). On the other hand, the size of the circuit441

produced by compile+ grows linearly on the input size.442

In the previous example, the bound obtained by compile+ was linear, which is the443

expected complexity in the case of detecting a regular language. It is straightforward to444

show that this is the case for any regular language, using the bound on the size of bfoq445

circuits given in Theorem 13.446

▶ Definition 16. Let A ∶ {0, 1}⋆ → {0, 1} be a decision problem. Given a foq program P, we447

say that P decides A if, for x̄ ∈ {0, 1}∗ and y ∈ {0, 1}, we have that JPK(∣x̄y⟩) = ∣x̄(y ⊕A(x̄))⟩.448

▶ Theorem 17 (Regular languages). For any regular language L, there exists a bfoq program449

P that decides if x̄ ∈ L, for any x̄ ∈ {0,1}∗, such that #compile+(P, n) ∈ O(n).450

Proof sketch. Since L is regular, there exists a deterministic finite automaton D that decides451

it. It is relatively simple to construct from D an bfoq program that decides the language452

in the sense given in Definition 16. Since D is deterministic, the level of the corresponding453

program is bounded linearly. Using Theorem 13 we obtain the desired result. ◀454

▶ Example 18. Let SUMr be the decision problem of checking if an input bitstring contains455

precisely r 1s. This corresponds to identifying bitstrings in the regular expression (0∗1)r0∗456

and therefore, by Theorem 17, there exists a bfoq program deciding SUMr such that457

compile+ outputs a family of circuits of linear size.458

5 Conclusions and Future Work459

In this paper, we have delineated an expressive fragment, named bfoq, of the first-order460

quantum programming language with quantum control of [10]. We have shown that bfoq461

is sound and complete for polynomial time computation (Theorem 9) and that the branch462

sequentialization problem introduced by [19] is solved for bfoq programs: the compiled463

circuit has size upper-bounded by the maximal complexity of program branches (Theorem 13).464

As a consequence, the compilation procedure generates circuits with a better size complexity465

than the compilation algorithm of [10] (Theorem 12). This result and the expressivity of466

bfoq are illustrated by the Examples of Table 1. A future and challenging research direction467

includes the extension of this work to higher-order.468
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A Semantics of FOQ programs517

In Section 2, we have defined L(N) as the set of lists of natural numbers [n1, . . . , nk] (the518

empty list being denoted by []), which are used to represent list of (unique) qubit pointers519

in the semantics.520

Basic data types τ are interpreted as follows:521

JIntegersK ≜Z JBooleansK ≜ B JSortedSetsK ≜ L(N)522

JQubitsK ≜N JOperatorsK ≜ C̃2×2
523
524

Each basic operation op ∈ {+,−,>,≥,=,∧,∨,¬} of arity n, with 1 ≤ n ≤ 2, has a type525

signature τ1 × . . . × τn → τ fixed by the program syntax. For example, the operation + has526

signature Integers × Integers → Integers. A total function JopK ∈ Jτ1K × . . . × JτnK → JτK is527

associated to each basic operation op.528

A function JUf K ∈ Z→ C̃2×2 is associated to each Uf as follows:529

JNOTK(n) ≜ (0 1
1 0), JRf

Y K(n) ≜ (cos(f(n)) − sin(f(n))
sin(f(n)) cos(f(n)) ), JPhf K(n) ≜ (1 0

0 eif(n)),

where C̃ is the set of polynomial time computable complex numbers, i.e., complex numbers530

whose both real and imaginary part are in R̃. Each of the above matrices is unitary, i.e., the531

matrix M satisfies M∗ ○M =M ○M∗ = I, with M∗ being the conjugate transpose of M and532

I being the identity matrix.533

For each basic type τ , the reduction ⇓JτK is a map in τ ×L(N) → JτK. Intuitively, it maps534

an expression of type τ to its value in JτK for a given list l of pointers in memory. These535

reductions are defined in Figure 8, where e and d denote either an integer expression i or a536

Boolean expression b.537

(e, l) ⇓Jτ1K m (d, l) ⇓Jτ2K n
(Op)

(e op d, l) ⇓JopK(Jτ1K,Jτ2K) JopK(m,n)
(i, l) ⇓Z n (Unit)

(Uf(i), l) ⇓C2×2 JUf K(n)

(Cst)
(n, l) ⇓Z n

(s, l) ⇓L(N) [x1, . . . , xm] (i, l) ⇓Z k ∈ [1,m]
(Rm∈)(s⊖ [i], l) ⇓L(N) [x1, . . . , xk−1, xk+1, . . . , xm]

(s, l) ⇓L(N) [x1, . . . , xn]
(Size)

(∣s∣, l) ⇓Z n
(s, l) ⇓L(N) [x1, . . . , xm] (i, l) ⇓Z k ∉ [1,m]

(Rm∉)(s⊖ [i], l) ⇓L(N) [ ]

(Nil)
(nil, l) ⇓L(N) [ ]

(s, l) ⇓L(N) [x1, . . . , xm] (i, l) ⇓Z k ∈ [1,m]
(Qu∈)(s[i], l) ⇓N xk

(Var)
(q̄, l) ⇓L(N) l

(s, l) ⇓L(N) [x1, . . . , xm] (i, l) ⇓Z k ∉ [1,m]
(Qu∉)(s[i], l) ⇓N 0

Figure 8 Semantics of expressions

Recall from Section 2 that the set of configurations over n qubits, denoted Confn, is
defined by

Confn ≜ (Statements ∪ {⊺,�}) ×H2n × P(N) × L(N),
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where P(N) being the powerset over N and where ⊺ and � are two special symbols for538

termination and error, respectively. Let ◇ stand for a symbol in {⊺,�}.539

A configuration c = (S, ∣ψ⟩ ,S, l) ∈ Confn contains a statement S to be executed (provided540

that S ∉ {⊺,�}), a quantum state ∣ψ⟩ of length n, a set S containing the qubit pointers that541

are allowed to be accessed by statement S, and a list l of qubit pointers.542

The program big-step semantics ⋅ ⋅Ð→ ⋅, described in Figure 9, is defined as a relation in543

⋃n∈N Confn ×N ×Confn.544

(Skip)
(skip, ∣ψ⟩ ,S, l) 0Ð→ (⊺, ∣ψ⟩ ,S, l)

(s[i], l) ⇓N n ∉ S (Asg�)
(s[i] ∗= Uf(j); , ∣ψ⟩ ,S, l) 0Ð→ (�, ∣ψ⟩ ,S, l)

(s[i], l) ⇓N n ∈ S (Uf(j), l) ⇓C2×2 M
(Asg⊺)

(s[i] ∗= Uf(j); , ∣ψ⟩ ,S, l) 0Ð→ (⊺, I2n−1 ⊗M ⊗ I2l(∣ψ⟩)−n ∣ψ⟩ ,S, l)

(S1, ∣ψ⟩ ,S, l)
m1Ð→ (⊺, ∣ψ′⟩ ,S, l) (S2, ∣ψ′⟩ ,S, l)

m2Ð→ (◇, ∣ψ′′⟩ ,S, l)
(Seq◇)

(S1 S2, ∣ψ⟩ ,S, l)
m1+m2Ð→ (◇, ∣ψ′′⟩ ,S, l)

(S1, ∣ψ⟩ ,S, l)
mÐ→ (�, ∣ψ⟩ ,S, l)

(Seq�)
(S1 S2, ∣ψ⟩ ,S, l)

mÐ→ (�, ∣ψ⟩ ,S, l)

(b, l) ⇓B b ∈ B (Sb, ∣ψ⟩ ,S, l)
mbÐ→ (◇, ∣ψ′⟩ ,S, l)

(If)
(if b then Strue else Sfalse, ∣ψ⟩ ,S, l)

mbÐ→ (◇, ∣ψ′⟩ ,S, l)

(s[i], l) ⇓N n ∈ S (Sk, ∣ψ⟩ ,S/{n}, l)
mkÐ→ (⊺, ∣ψk⟩ ,S/{n}, l) (Case⊺)

(qcase s[i] of {0→ S0,1→ S1}, ∣ψ⟩ ,S, l)
maxk mkÐ→ (⊺,∑k ∣k⟩n⟨k∣n ∣ψk⟩ ,S, l)

(s[i], l) ⇓N n ∈ S (Sk, ∣ψ⟩ ,S/{n}, l)
mkÐ→ (◇k, ∣ψk⟩ ,S/{n}, l) � ∈ {◇0,◇1} (Case�)

(qcase s[i] of {0→ S0,1→ S1}, ∣ψ⟩ ,S, l)
maxk mkÐ→ (�, ∣ψ⟩ ,S, l)

(s[i], l) ⇓N n ∉ S (Case∉)
(qcase s[i] of {0→ S0,1→ S1}, ∣ψ⟩ ,S, l)

0Ð→ (�, ∣ψ⟩ ,S, l)

(s, l) ⇓L(N) l′ ≠ [ ] (i, l) ⇓Z n (Sproc{n/x}, ∣ψ⟩ ,S, l′) mÐ→ (◇, ∣ψ′⟩ ,S, l′)
(Call◇)

(call proc[i](s); , ∣ψ⟩ ,S, l) m+1Ð→ (◇, ∣ψ′⟩ ,S, l)

(s, l) ⇓L(N) [ ]
(Call[ ])

(call proc[i](s); , ∣ψ⟩ ,S, l) 1Ð→ (⊺, ∣ψ⟩ ,S, l)

Figure 9 Semantics of statements
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B Proofs545

In this section, we provide the full proof of Theorem 17. Towards that end, we first define a546

notion of call-graph.547

▶ Definition 19 (Call graph). A call graph G is a triple (proc, V,E) where548

proc ∈ V is the entry node;549

V ⊆ Procedures is a set of nodes containing a special procedure ⊕;550

E ⊆ V ×L × V is a set of labeled directed edges, where labels correspond to combinations551

of quantum and classical conditionals.552

Procedure ⊕ only applies a NOT gate to the last qubit in the input and terminates. Labels L553

are defined as follows: values {0,1} denote a quantum if statement on the first qubit, and554

∣q̄∣ = n or ∣q̄∣ > n denotes a boolean condition on the size of the input.555

▶ Theorem 17 (Regular languages). For any regular language L, there exists a bfoq program556

P that decides if x̄ ∈ L, for any x̄ ∈ {0,1}∗, such that #compile+(P, n) ∈ O(n).557

Proof. Let D be a deterministic finite automaton deciding L. We will construct the pfoq558

program P by using D to define the call graph for P. The subtlety in the transformation559

is in the difference between the acceptance condition in D (i.e., termination in an accept560

state) and the acceptance nodes of the call graph, referring here to the ⊕ nodes. For a base561

state ∣x̄y⟩, the program P outputs ∣x̄(¬y)⟩ iff it ever reaches a ⊕ node, at which point P562

terminates.563

The call graph is then defined as follows. The call graph contains a node for each state of564

C, with the same transitions, except for those that constitute incoming our outgoing edges of565

an accept state, i.e., edges xi, yi, zi in the following diagram:566

a1

ak

⋮

b

c1

cℓ

⋮x1

xk

y1

yℓ

z1 . . . zm567

These edges are encoded in the call graph as follows:568

a1 ak⋯

⊕

d

c1

cℓ

⋮

x1, ∣q̄∣ = 1

xk, ∣q̄∣ = 1

x1, ∣q̄∣ > 1

xk, ∣q̄∣ > 1

y1

yℓ

{zi, ∣q̄∣ = 1}i=1...m

{zi, ∣q̄∣ > 1}i=1...m

569

with an extra procedure d for each accept state and using edges with classical conditions to570

handle the acceptance condition of the program. P is then defined as the program given by571

the call graph where the procedures consist only of the procedure calls defined in the graph.572

For a set of conditions ci, with i = 1 . . .m, we denote by {ci}i=1...m a set of m edges each573

labelled with a conditions ci.574
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Since each procedure performs at most one procedure call per branch (recursive or575

otherwise) its level will be linear on the input size. ◀576

C Regular languages (Example 15)577

The following is the program defined by the call graph given in Example 15.578

1 decl f0(q̄){579

2 qcase q̄[1] of {0→ call f1(q̄ ⊖ [1]), 1→ call f0(q̄ ⊖ [1])},580

581

3 decl f1(q̄){582

4 qcase q̄[1] of {0→ call f2(q̄ ⊖ [1]), 1→ call f0(q̄ ⊖ [1])},583

584

5 decl f2(q̄){585

6 qcase q̄[1] of {0→ call f2(q̄ ⊖ [1]), 1→ call f3(q̄ ⊖ [1])},586

587

7 decl f3(q̄){588

8 qcase q̄[1] of {0→ call f3(q̄ ⊖ [1]), 1→ call f4(q̄ ⊖ [1])},589

590

9 decl f4(q̄){591

10 qcase q̄[1] of {0→ call f3(q̄ ⊖ [1]), 1→ call ⊕ (q̄ ⊖ [1])},592

593

11 decl ⊕ (q̄){594

12 q̄[−1] ∗= NOT;}595

596

13 ∶∶ call f0(q̄);597598

It is straightforward to verify that all conditions of bfoq are met and that the level of599

the program is linearly bounded.600
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