
HUGR: A Quantum-Classical
Intermediate Representation

Mark Koch
Agustín Borgna
Seyon Sivarajah

Quantinuum
Cambridge, United Kingdom

Alan Lawrence
Alec Edgington
Douglas Wilson
Ross Duncan
Quantinuum

Cambridge, United Kingdom

Craig Roy
Luca Mondada

Lukas Heidemann
Quantinuum

Cambridge, United Kingdom

Abstract
We introduce the Hierarchical Unified Graph Representation
(HUGR): a novel graph based intermediate representation for
mixed quantum-classical programs. HUGR’s design features
high expressivity and extensibility to capture the capabilities
of near-term and forthcoming quantum computing devices,
as well as new and evolving abstractions from novel quan-
tum programming paradigms. The graph based structure is
machine-friendly and supports powerful pattern matching
based compilation techniques. Inspired by MLIR, HUGR’s
extensibility further allows compilation tooling to reason
about programs at multiple levels of abstraction, lowering
smoothly between them. Safety guarantees in the structure
including strict, static typing and linear quantum types allow
rapid development of compilation tooling without fear of
program invalidation. A full specification of HUGR and ref-
erence implementation are open-source and available online.

1 Introduction
Modern applications of quantum computers usually involve
both quantum and classical processors interacting with each
other. In particular, there is an increasing interest in algo-
rithms that require classical decision making during the ex-
ecution of a circuit (i.e. within the coherence time of its
qubits). For example, recently demonstrated repeat-until-
success protocols [3, 22] and other algorithms use classi-
cal control-flow conditioned on mid-circuit measurements
to determine which quantum operations should be applied
next [9, 14, 21]. Going beyond that, quantum error correction
algorithms, for example, might require even more complex
classical logic to decode errors in real-time and apply correc-
tions to the quantum state [24, 26].

Enabling this tight integration between the quantum and
classical processor requires dedicated support throughout
the entire quantum software stack. In particular, as previ-
ously argued in [3, 10, 19], there is a need for an intermediate
representation (IR) for quantum programs that natively cap-
tures these classical operations, going beyond the traditional
circuit picture. To this end, we introduce the Hierarchical
Unified Graph Representation (HUGR), a novel quantum IR

Authors’ contact email: {name}.{surname}@quantinuum.com

that can efficiently express, reason about, and optimise these
hybrid quantum-classical programs in a unified graph struc-
ture. Its design is guided by the following main principles:

Expressivity. HUGR captures the various computational
requirements of quantum algorithms in one unified frame-
work. It can express everything from traditional, static (pos-
sibly parameterised) circuits and hybrid quantum-classical
optimisation loops up to the real-time quantum classical
logic described above.

Machine-friendliness. As an intermediate representa-
tion, HUGR is designed to be efficiently consumable and
manipulable by software. We do not expect end users to read
or write HUGR directly. Instead, they should rely on front-
ends like higher-level programming languages or libraries
that compile to HUGR (see Section 4.2 for a more detailed
explanation of this workflow).

Abstraction. Quantum algorithms are usually built up
from multiple layers of abstraction, starting from some prob-
lem domain (say, a Hamiltonian describing a chemical sys-
tem) that is then continuously lowered (for example by syn-
thesising oracle circuits, inserting error mitigation steps,
etc.). HUGR is designed to faithfully capture this staged low-
ering of abstraction levels, allowing compilers to exploit the
unique opportunities for optimisation available at each step.

Extensibility. HUGR follows a modular design where
new operations and data types can be added on the fly,
comparable to the dialect system in the MLIR compiler tool
chain [16]. This allows third parties to define their own be-
spoke abstractions and lowering routines that seamlessly
compose with other components and passes.

Optimisability. HUGR is designed to enable efficient op-
timisation of quantum programs, both within and across
the quantum-classical boundary. On top of that, we provide
efficient routines for matching and rewriting of patterns
within HUGR programs that third parties can hook into to
define their own domain-specific optimisation routines (see
Section 3 for details).

The full specification and reference implementation of
HUGR are open-source and available at github.com/CQCL/hugr.

https://orcid.org/0000-0001-8511-2703
https://orcid.org/0000-0002-1688-1370
https://orcid.org/0000-0002-7332-5485
https://orcid.org/0000-0002-0508-6988
https://orcid.org/0000-0001-6758-1573
https://orcid.org/0009-0002-6034-2910
https://orcid.org/0000-0002-7496-7711
https://orcid.org/0000-0002-7137-2368
http://www.github.com/CQCL/hugr


2 The Hierarchical Unified Graph
Representation

2.1 Quantum Programs as Dataflow Graphs
Quantum compiler architectures usually represent quantum
circuits in the form of directed acyclic graphs (DAGs) where
nodes are quantum gates and edges describe the qubit de-
pendencies between them. HUGR generalises this model by
encoding both quantum and classical operations in the same
DAG structure. Concretely, HUGR represents programs via
dataflow graphs spanned between an input and output node,
where edges can carry either qubits or arbitrary classical data.
The nodes correspond to quantum or classical processes that
act on these values and produce some outputs that can be
fed to the following nodes in the graph:

In
Addf64

f64

qubit

Rz OutRx

qubit

f64

f64

qubit

(1)

The graph above describes a program that applies an 𝑅𝑍
and an 𝑅𝑋 rotation gate to an input qubit, where the ro-
tation angle is dynamically computed as the sum of two
floats that are given as additional inputs. The edges in HUGR
are statically typed and node operations have a static signa-
ture (for example, the Rz operation above has the signature
qubit, f64 → qubit). We ensure that programs are well-
typed by only allowing edges that match up with the opera-
tion signatures. Note that we leave out type annotations in
the following examples if they can be inferred from context.
The inputs and outputs of HUGR nodes are explicitly or-

dered, corresponding to numbered ports on the nodes. For
example, in Graph 1 the qubit edge is connected to the first
input port of the Rz node, whereas the f64 edge is connected
to its second port. The Add node only has a single output
port that is wired to both the Rz and Rx node. This is valid
since classical values can be copied and thus used multiple
times. However, the same is not true for quantum values
such as qubits:

H
qubit

CX

qubit

In Out

qubit

E (2)

This program would not be physically realisable since the
control and target of the CX gate act on the same qubit. To
rule out mistakes like these, HUGR ensures that ports cor-
responding to qubits have exactly one connected edge, so
Graph 2 is rejected. This corresponds to treating qubit as a
linear type [27].
HUGR continuously enforces these typing and linearity

constraints in between optimisation steps, thus preventing
optimisation routines from erroneously invalidating pro-
grams.

2.2 Control Flow & Hierarchy
The dataflow representation described above requires ad-
ditional primitives to represent control flow in a program.
HUGR defines a set of node operations to express structured
control flow. Givenmultiple execution graphs, a Conditional
operation is able to branch between them based on a control
input:

In qubit

qubit
Meas

Conditional

Case

bool In H Out

Case

In X Out

Out (3)

Here, the first qubit is measured and depending on the out-
come either an H or an X gate is applied to the second qubit,
which is then outputted. Note that the Conditional node
has two Case child nodes that themselves contain children
forming a nested dataflow graph. This highlights another
core feature of HUGR: Graphs are hierarchical in the sense
that each node can itself contain a nested child graph. This al-
lows hierarchical nodes like the ones shown in Graph 3 to be
nested arbitrarily deeply. Besides Conditional, HUGR also
offers a TailLoop primitive to describe structured looping
of a child dataflow graph (see Appendix A.1 for an example).
In the spirit of supporting varying levels of abstraction,

HUGR also allows users to specify control flow in non-
structured ways via arbitrary control-flow graphs. Control-
flow graphs are expressed via the same hierarchical structure:
BasicBlock nodes contain child graphs specifying the logic
of each block and are then wired together inside a parent
CFG node (see Appendix A.2 for an example). These graphs
can be converted to the aforementioned structured primi-
tives [1], or used in lowering stages when targeting CFG
based representations like LLVM.

2.3 Functions and higher order types
Classical programs are often structured as collections of
functions in a namespace, with a defined entry point and
internal calls between them. HUGR provides operations for
defining and calling functions, supported by the hierarchical
structure presented in Section 2.2.

Functions can either be defined as a dataflow graph inside
a FuncDef node, or be declared as an external reference with
a FuncDecl. In the latter case, it is assumed that programwill
be linked with a definition of the function at a later stage.

In qubit

qubit
Call

FuncDecl("foo")

bool
Out

qubit,qubit→ bool

(4)

2



In the example above, we declare an external function foo
with signature qubit, qubit → bool and pass it as an argu-
ment to a Call node, which executes it on some input values.
The wire connecting the declaration to the Call is a spe-
cial constant edge (represented by a dashed line in Graph 4)
that denotes compile-time static values. A LoadFunction
node may be used to turn such a static function value into
a dynamic runtime value that can be passed around in the
dataflow graph. Combined with the control flow primitives,
this allows for the definition of higher-order functions that
take functions as arguments or return functions as results.
While runtime function values must have a fixed signa-

ture, the static function definitions may have polymorphic
signatures. That is, the input and output type definitions
may include type variables that can be instantiated with
user-defined types. The concrete signature for the function
is only determined at the call site.

2.4 Extensibility
The HUGR representation is designed to be extensible, allow-
ing users to define new operations and data types specific to
their needs. In the examples presented so far, we have used
a set of quantum and classical operations that are included
as part of a standard library for the HUGR representation.
Since the definitions are not hard-coded into the representa-
tion, users are free to mix and replace them with specialised
operations relevant to their domain. For example, quantum
abstractions like quantum control, multiplexed unitaries, un-
computation, etc. can all be captured inside the extension
system and do not need to be baked into HUGR.

This design choice allows the core HUGR representation
to remain agnostic to the operations being modelled. A pro-
gram may be defined using the instruction set of a specific
quantum device, and tooling that does not have access to
its definition will still be able to reason about the program
structure and perform optimisations that are agnostic to the
operation semantics. It is the responsibility of the user to
implement lowering routines or rewrite rules that define the
behaviour of the new operations, but these are not required
to be shared with the core HUGR implementation.

3 Optimisation
The HUGR representation is particularly well suited for
pattern-matching based optimisation. This is a common tech-
nique in classical compiler design where small subgraphs
are identified and replaced with more efficient or simpler
ones. In contrast to pass-based optimisation, where the entire
program is traversed and transformed in multiple iterations,
pattern matching allows for efficient composition of rewrite
rules and facilitates parallelisation.
The port labels on the nodes of a HUGR provide extra

structure to the graph which enables much more efficient

matching than generic subgraph isomorphism checks. Addi-
tionally, the incorporation of linear types, which are preva-
lent in most quantum operations represented in HUGR, guar-
antees that the majority of ports have a single connected
edge. Finally, the structured control-flow primitives reduce
the complexity when defining patterns on branching opera-
tions. These properties combined allow us to compile sets of
patterns intomatching structureswhich are able to efficiently
search for tens of thousands of patterns simultaneously [20].
The operation and type extension framework described

in Section 2.4 ensures that optimisation routines must al-
ways be aware of potentially unknown operations within the
graph. This guarantees that all rewrite implementations are
robust against new operations being added to the graph and
that user-defined routines capable of reasoning about their
domain-specifics can be safely composed with extension-
agnostic ones.

4 Discussion
4.1 Related work

Traditional frameworks. Most traditional quantum com-
piler frameworks like Cirq [7], Pennylane [2], TKET [25],
and Qiskit [12] internally represent quantum circuits as
lists or graphs of gates and use OpenQASM 2 [6] as a com-
mon low-level assembly format for circuits. Support for dy-
namic quantum-classical programs tends to be fairly limited
in these frameworks and usually relies on unrolling of all
control-flow. OpenQASM 3 [5] was introduced to naively
handle these classical operations, however it mainly serves
as a high-level programming language rather than an inter-
mediate representation.

QIR. TheQuantum Intermediate Representation (QIR) [23]
is arguably the most well-know standalone IR for quantum
programs. It is based on the LLVM IR [15] and leverages the
existing mature compiler infrastructure of the LLVM project.
QIR is designed to be hardware-agnostic and as such offers a
notion of profiles to specify the capabilities offered by a given
device. In particular, there is ongoing work [4] to define a
profile for QIR programs that captures the real-time classical
operations and branching demonstrated in [3, 17].
Compared to HUGR, QIR is a more low-level represen-

tation where qubits are treated like opaque pointers and
quantum operations are side-effectful opaque functions. This
means that optimisers like that in [18] need to rely on global
dataflow analyses to track qubits as opposed to the simpler
graph-based matching available in HUGR (see Section 3).
Furthermore, QIR is not easily extensible: while it provides
some built-in quantum features like controlled and adjoint
operations, there is currently no way to add custom higher-
level abstractions.

MLIR. QIR’s lack of customisability is at least in part due
to the rigidness of LLVM’s IR which was mainly designed

3



for C-like languages. The MLIR project [16] aims to address
LLVM’s drawbacks by introducing an IR with a dialect sys-
tem that allows users to define their own domain-specific
abstractions. This design served as a major inspiration for
the extension system in HUGR.
While MLIR was initially used in the context of hetero-

geneous computing and machine learning, it has since also
been applied to the quantum domain. MLIR based quantum
dialects are used in QIRO [10], QCor [19], and the Catalyst
compiler [11]. In fact, MLIR is expressive enough such that
HUGR itself can be implemented as one of its dialects, which
would make it compatible with the broader MLIR ecosystem.
A prototype of such a dialect with conversions to and from
the reference implementation has already been developed.1
However, we decided to keep the reference implemen-

tation of HUGR independent of MLIR for a few key rea-
sons. First, MLIR is still under rapid development, and as
such not fully stable and mature. Furthermore, as part of
our mission-critical stack, we want to leverage the memory
safety provided by Rust and avoid being tied to MLIR’s C++
implementation. Finally, maintaining our own implemen-
tation allows us to focus on features that are particularly
relevant to the quantum domain. For example, linear types
are a first-class concept in HUGRwhereas representing them
in MLIR would require a more complicated setup and checks
that would feel less natural.

4.2 Ecosystem
As a flexible intermediate representation, HUGR is suitable
for generation, transformation, and consumption by a range
of third-party front-ends, compilers, and back-ends respec-
tively. A number of sister projects highlight some of the
design choices made in HUGR, and demonstrate full work-
flows that employ it:

Guppy. Workflows involving quantum processors or sim-
ulators typically include Python at some level, especially at
the program definition stage. Guppy2 [13] is an embedded
domain specific language (EDSL) within Python as a host
language, with the goal of offering users powerful quantum
programming abstractions with the familiarity of a Python
working environment. Crucially, it allows existing Python
code-bases to add Guppy for quantum programming without
having to port any classical logic.

Guppy features Pythonic syntax, but is not an interpreted
language; it compiles to HUGR. Quantum programs defined
in Guppy can include arbitrary classical control flow and
logic, which HUGR can represent natively. HUGR’s expres-
sive extension and type systems can capture abstract struc-
tures in user-programs, allowing powerful reasoning over
these structures at compilation time.

1Available at github.com/CQCL/hugr-mlir.
2Available at github.com/CQCL/guppylang.

BRAT. Functional programming offers an alternative par-
adigm for quantum programming. The experimental BRAT
language3 [8] offers pure-functional quantum-classical pro-
grams, dependent typing for quantum resource management
and unique compositional syntax for circuit building. BRAT
also compiles to HUGR, allowing a shared tool-chain for
quantum compilation despite offering a very different pro-
gramming experience to Guppy.

TKET2. Version 2 of the TKET compiler4 [25] is designed
to optimise quantum programs represented as HUGRs. It
includes quantum-specific HUGR extensions: an example of
non-core tooling defining extension semantics. The compiler
also includes implementations of the powerful optimisation
techniques discussed in Section 3, enabled by the HUGR
representation. TKET2 performs HUGR to HUGR transfor-
mations, making the optimisations highly re-usable across
front-ends and back-ends.

HUGR-LLVM. Next-generation quantum targets are in-
creasingly using LLVM based tool-chains, QIR compatible
targets being good examples. To this end, the HUGR-LLVM
project5 enables lowering of HUGR to LLVM, in an extensi-
ble manner to allow HUGR extension operations to also be
lowered. This will be used to compile HUGR to execute on
Quantinuum ion-trap quantum processors.

References
[1] Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Chris-

tian Meyer. Perfect reconstructability of control flow from demand
dependence graphs. ACM Trans. Archit. Code Optim., 11(4), 2015.
doi:10.1145/2693261.

[2] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shah-
nawaz Ahmed, Vishnu Ajith, M. Sohaib Alam, Guillermo Alonso-
Linaje, B. AkashNarayanan, Ali Asadi, Juan Miguel Arrazola, Utkarsh
Azad, Sam Banning, Carsten Blank, Thomas R Bromley, Benjamin A.
Cordier, Jack Ceroni, Alain Delgado, Olivia Di Matteo, Amintor
Dusko, Tanya Garg, Diego Guala, Anthony Hayes, Ryan Hill, Aroosa
Ijaz, Theodor Isacsson, David Ittah, Soran Jahangiri, Prateek Jain,
Edward Jiang, Ankit Khandelwal, Korbinian Kottmann, Robert A.
Lang, Christina Lee, Thomas Loke, Angus Lowe, Keri McKiernan, Jo-
hannes Jakob Meyer, J. A. Montañez-Barrera, Romain Moyard, Zeyue
Niu, Lee James O’Riordan, Steven Oud, Ashish Panigrahi, Chae-Yeun
Park, Daniel Polatajko, Nicolás Quesada, Chase Roberts, Nahum Sá,
Isidor Schoch, Borun Shi, Shuli Shu, Sukin Sim, Arshpreet Singh, In-
grid Strandberg, Jay Soni, Antal Száva, Slimane Thabet, Rodrigo A.
Vargas-Hernández, Trevor Vincent, Nicola Vitucci, Maurice Weber,
David Wierichs, Roeland Wiersema, Moritz Willmann, Vincent Wong,
Shaoming Zhang, and Nathan Killoran. Pennylane: Automatic dif-
ferentiation of hybrid quantum-classical computations, 2022. URL:
https://arxiv.org/abs/1811.04968, arXiv:1811.04968.

[3] Natalie C. Brown, John Peter Campora III, Cassandra Granade, Bet-
tina Heim, Stefan Wernli, Ciaran Ryan-Anderson, Dominic Lucchetti,

3Available at github.com/CQCL/brat.
4Available at github.com/CQCL/tket2.
5Available at github.com/CQCL/hugr-llvm.

4

http://www.github.com/CQCL/hugr-mlir
http://www.github.com/CQCL/guppy
https://doi.org/10.1145/2693261
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/1811.04968
http://www.github.com/CQCL/brat
http://www.github.com/CQCL/tket2
http://www.github.com/CQCL/hugr-llvm


Adam Paetznick, Martin Roetteler, Krysta Svore, and Alex Chernogu-
zov. Advances in compilation for quantum hardware – a demonstra-
tion of magic state distillation and repeat-until-success protocols, 2023.
URL: https://arxiv.org/abs/2310.12106, arXiv:2310.12106.

[4] J. P. Campora III. Specification for the QIR Adaptive Profile. QIR Alliance,
2023. Work in progress. URL: https://github.com/qir-alliance/qir-
spec/pull/35.

[5] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beau-
drap, Lev S. Bishop, Steven Heidel, Colm A. Ryan, Prasahnt Sivarajah,
John Smolin, Jay M. Gambetta, and Blake R. Johnson. Openqasm3: A
broader and deeper quantum assembly language. ACM Transactions
on Quantum Computing, 3(3), sep 2022. doi:10.1145/3505636.

[6] AndrewW. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta.
Open quantum assembly language, 2017. URL: https://arxiv.org/abs/
1707.03429, arXiv:1707.03429.

[7] Cirq Developers. Cirq, May 2024. doi:10.5281/zenodo.11398048.
[8] Ross Duncan, Mark Koch, Alan Lawrence, Connor McBridge, and

Craig Roy. Introducing Brat. In Fourth International Workshop
on Programming Languages for Quantum Computing (PLanQC ’24),
January 2024. URL: https://popl24.sigplan.org/details/planqc-2024-
papers/9/Introducing-BRAT.

[9] Robert B. Griffiths and Chi-Sheng Niu. Semiclassical fourier transform
for quantum computation. Phys. Rev. Lett., 76:3228–3231, Apr 1996.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.76.3228, doi:10.
1103/PhysRevLett.76.3228.

[10] David Ittah, Thomas Häner, Vadym Kliuchnikov, and Torsten Hoefler.
Qiro: A static single assignment-based quantum program representa-
tion for optimization. ACM Transactions on Quantum Computing, 3(3),
jun 2022. doi:10.1145/3491247.

[11] Josh Izaac. Introducing catalyst: quantum just-in-time compilation,
2023. URL: https://pennylane.ai/blog/2023/03/introducing-catalyst-
quantum-just-in-time-compilation/.

[12] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J.
Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation,
Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and Jay M. Gam-
betta. Quantum computing with Qiskit, 2024. arXiv:2405.08810,
doi:10.48550/arXiv.2405.08810.

[13] Mark Koch, Alan Lawrence, Kartik Singhal, Seyon Sivarajah, and Ross
Duncan. GUPPY: Pythonic quantum-classical programming. In Fourth
International Workshop on Programming Languages for Quantum Com-
puting (PLanQC ’24), January 2024. URL: https://ks.cs.uchicago.edu/
publication/guppy-planqc/.

[14] Greg Kuperberg. A subexponential-time quantum algorithm for
the dihedral hidden subgroup problem. SIAM Journal on Com-
puting, 35(1):170–188, 2005. arXiv:https://doi.org/10.1137/
S0097539703436345, doi:10.1137/S0097539703436345.

[15] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’04, page 75, USA,
2004. IEEE Computer Society.

[16] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: scaling compiler infrastruc-
ture for domain specific computation. In Proceedings of the 2021
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO ’21, page 2–14. IEEE Press, 2021. doi:10.1109/CGO51591.
2021.9370308.

[17] Thomas Lubinski, Cassandra Granade, Amos Anderson, Alan Geller,
Martin Roetteler, Andrei Petrenko, and Bettina Heim. Advancing hy-
brid quantum–classical computation with real-time execution. Fron-
tiers in Physics, 10, 2022. URL: https://www.frontiersin.org/journals/
physics/articles/10.3389/fphy.2022.940293, doi:10.3389/fphy.2022.
940293.

[18] Junjie Luo, Haoyu Zhang, and Jianjun Zhao. Dataflow-based optimiza-
tion for quantum intermediate representation programs, 2024. URL:
https://arxiv.org/abs/2406.19592, arXiv:2406.19592.

[19] Alexander McCaskey and Thien Nguyen. A mlir dialect for quantum
assembly languages. In 2021 IEEE International Conference on Quantum
Computing and Engineering (QCE), pages 255–264, 2021. doi:10.
1109/QCE52317.2021.00043.

[20] Luca Mondada and Pablo Andrés-Martínez. Scalable pattern matching
in computation graphs, 2024. URL: https://arxiv.org/abs/2402.13065,
arXiv:2402.13065.

[21] Maris Ozols, Martin Roetteler, and Jérémie Roland. Quantum rejection
sampling. ACM Trans. Comput. Theory, 5(3), aug 2013. doi:10.1145/
2493252.2493256.

[22] Adam Paetznick and Krysta Svore. Repeat-until-success: Non-
deterministic decomposition of single-qubit unitaries. Quantum Infor-
mation and Computation, 14, 11 2013. doi:10.26421/QIC14.15-16-
2.

[23] QIR Alliance. QIR Specification. QIR Alliance, 2021. https://qir-
alliance.org. URL: https://github.com/qir-alliance/qir-spec.

[24] Peter W. Shor. Scheme for reducing decoherence in quantum com-
puter memory. Phys. Rev. A, 52:R2493–R2496, Oct 1995. URL:
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493, doi:10.1103/
PhysRevA.52.R2493.

[25] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons,
Alec Edgington, and Ross Duncan. t|ket〉: a retargetable compiler
for nisq devices. Quantum Science and Technology, 6(1):014003,
November 2020. URL: http://dx.doi.org/10.1088/2058-9565/ab8e92,
doi:10.1088/2058-9565/ab8e92.

[26] A. M. Steane. Simple quantum error-correcting codes. Phys. Rev.
A, 54:4741–4751, Dec 1996. URL: https://link.aps.org/doi/10.1103/
PhysRevA.54.4741, doi:10.1103/PhysRevA.54.4741.

[27] Philip Wadler. Linear types can change the world! In Programming
Concepts and Methods, 1990. URL: https://api.semanticscholar.org/
CorpusID:58535510.

5

https://arxiv.org/abs/2310.12106
https://arxiv.org/abs/2310.12106
https://github.com/qir-alliance/qir-spec/pull/35
https://github.com/qir-alliance/qir-spec/pull/35
https://doi.org/10.1145/3505636
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://doi.org/10.5281/zenodo.11398048
https://popl24.sigplan.org/details/planqc-2024-papers/9/Introducing-BRAT
https://popl24.sigplan.org/details/planqc-2024-papers/9/Introducing-BRAT
https://link.aps.org/doi/10.1103/PhysRevLett.76.3228
https://doi.org/10.1103/PhysRevLett.76.3228
https://doi.org/10.1103/PhysRevLett.76.3228
https://doi.org/10.1145/3491247
https://pennylane.ai/blog/2023/03/introducing-catalyst-quantum-just-in-time-compilation/
https://pennylane.ai/blog/2023/03/introducing-catalyst-quantum-just-in-time-compilation/
https://arxiv.org/abs/2405.08810
https://doi.org/10.48550/arXiv.2405.08810
https://ks.cs.uchicago.edu/publication/guppy-planqc/
https://ks.cs.uchicago.edu/publication/guppy-planqc/
https://arxiv.org/abs/https://doi.org/10.1137/S0097539703436345
https://arxiv.org/abs/https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2022.940293
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://doi.org/10.3389/fphy.2022.940293
https://arxiv.org/abs/2406.19592
https://arxiv.org/abs/2406.19592
https://doi.org/10.1109/QCE52317.2021.00043
https://doi.org/10.1109/QCE52317.2021.00043
https://arxiv.org/abs/2402.13065
https://arxiv.org/abs/2402.13065
https://doi.org/10.1145/2493252.2493256
https://doi.org/10.1145/2493252.2493256
https://doi.org/10.26421/QIC14.15-16-2
https://doi.org/10.26421/QIC14.15-16-2
https://qir-alliance.org
https://qir-alliance.org
https://github.com/qir-alliance/qir-spec
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://link.aps.org/doi/10.1103/PhysRevA.54.4741
https://link.aps.org/doi/10.1103/PhysRevA.54.4741
https://doi.org/10.1103/PhysRevA.54.4741
https://api.semanticscholar.org/CorpusID:58535510
https://api.semanticscholar.org/CorpusID:58535510


A Additional Examples
A.1 Tail Loops
Below is an example HUGR program that uses a TailLoop node to implement a (𝐼 + 𝑖

√
2𝑋 )/

√
3 operation on its input qubit

using the repeat-until-success scheme from [22, Fig. 8]. The first bool output of the loop body controls whether another loop
iteration should be performed, which is the case if the measurement returned false. The Conditional node is used to apply
an additional Z correction in that case. Note that the T†X nodes stand for the 𝐻𝑇 †𝐻 ≈ 𝑅𝑋 (−𝜋/4) gate.

In

T†XQAlloc

CX CX

Meas
Out

bool

qubit qubit

TailLoop

T H T†X

T†X
Conditional

Case

In Out

Case

In Z Out

bool

In

qubit

Out

qubit

qubit

A.2 Control Flow Graphs
The graph below implements the same program as in Appendix A.1 using a control-flow graph instead of a TailLoop node.
The dotted edges between the basic blocks describe control flow instead of dataflow and thus are not required to be acyclic.

In

T†XQAlloc

CX CX

Meas

qubit qubit
T H T†X

T†X

Out

bool

EntryBlock

In Z Out

BasicBlock

ExitBlock

CFG

In

qubit

Out

qubit

6


	Abstract
	1 Introduction
	2 The Hierarchical Unified Graph Representation
	2.1 Quantum Programs as Dataflow Graphs
	2.2 Control Flow & Hierarchy
	2.3 Functions and higher order types
	2.4 Extensibility

	3 Optimisation
	4 Discussion
	4.1 Related work
	4.2 Ecosystem

	References
	A Additional Examples
	A.1 Tail Loops
	A.2 Control Flow Graphs


