
Automatic quantum function parallelization and memory
management in Qrisp
Raphael Seidel

Fraunhofer Institute for Open Communication Systems, Berlin, Germany

Automated optimization of quantum pro-
grams has gathered significant attention amidst
the recent advances of hardware manufactur-
ers. In this work we introduce a novel data-
structure for representing quantum programs
called permeability DAG, which captures sev-
eral useful properties of quantum programs
across multiple levels of abstraction. Oper-
ating on this representation facilitates a va-
riety of powerful transformations such as au-
tomatic parallelization, memory management
and synthesis of uncomputation. More poten-
tial use-cases are listed in the outlook section.
At the core, our representation abstracts away
a class of non-trivial commutation relations,
which stem from a feature called permeability.
Both memory management and parallelization
can be made sensitive to execution speed details
of each particular quantum gate, implying our
compilation methods are not only retargetable
between NISQ/FT but even for individual de-
vice instances.

1 Introduction
The promising advances of recent quantum hardware
manufacturers [1–3] spark realistic hopes of achiev-
ing large scale fault tolerant quantum computations
within less than a decade. As the scale of treatable
problems grows, the implementation of more elabo-
rate algorithms faces a variety of challenges. One of
them is the lack of systematic programming abstrac-
tions, which are indispensable to all of modern soft-
ware engineering (such as modular development, sys-
tematic testing or code introspection for debugging).
Within a recent work [4] we gave an overview over
our quantum programming framework Qrisp, which
tackles these challenges. A core advantage of Qrisp is
the possibility to modularize algorithm development,
which is rooted in the feature of automatic quantum
memory management. The present work introduces
the structures and algorithms behind this feature. Ad-
ditionally, we present a related algorithm, which auto-
matically reduces the circuit runtime by establishing
parallelism between quantum function calls. Both of

Raphael Seidel: raphael.seidel@fokus.fraunhofer.de

Figure 1: A plot of the resulting CNOT depth after apply-
ing several circuit optimizers (including the presented paral-
lelization algorithm) to MaxCut problem circuits [5]. The
problem instances are constructed by sampling a random
Erdös–Rényi graph [6] with p = 0.5 for each node count. To
optimize the circuits in Qiskit, we leverage the transpile
function with optimization level 3. For PyTKET, we used
the FullPeepholeOptimise optimization pass, which is ad-
vertised as a one fits all procedure. We note that our method
works particularly well for MaxCut problems, implying general
algorithms will most likely see a more moderate improvement
in circuit depth.

these algorithms are based on a novel DAG represen-
tation called permeability DAG, which leverages non-
trivial commutation relations among quantum func-
tion calls. In its essence, the permeability DAG cap-
tures information about which functions leave their in-
puts “constant” in a rigorously defined notion of “con-
stant”, which we call permeability. We show that if
there are several functions operating in a permeable
way on the same set of qubits, these functions can be
interchanged. The permeability DAG therefore repre-
sents quantum algorithms with the mentioned commu-
tation relations hard coded into its internal structure.
As such, a much broader class of transformations is
possible by operating on this representation.
A subset of the mentioned type of commutation rela-
tions have already been realized in the form of a DAG
within the context of automatic synthesis of uncompu-
tation circuits [7] (“Unqomp”). In this work we refine
the Unqomp DAG to facilitate more general uncom-
putations and also the above mentioned compilation
algorithms for memory management and paralleliza-
tion.

1

https://quantum-journal.org/?s=Automatic%20quantum%20function%20parallelization%20and%20memory%20management%20in%20Qrisp&reason=title-click
https://quantum-journal.org/?s=Automatic%20quantum%20function%20parallelization%20and%20memory%20management%20in%20Qrisp&reason=title-click
mailto:raphael.seidel@fokus.fraunhofer.de

2 Permeability
Permeability is a property of (composite) quantum
gates, that was initially introduced by us in [8] and
gives a formal meaning of what “constant” could mean
for a quantum function. Even though the original pur-
pose of the concept was restricted to automatic syn-
thesis of uncomputations, we realized that the scope
of applications is much broader. At the core, per-
meability information allows the compiler to lever-
age non-trivial commutation relations. To understand
how this works in detail, we recall the definition given
in [8].

Definition 2.1 (Permeability). A (composite)
quantum gate U is called Z-permeable in qubit
i, if it commutes with the Z operator on this
qubit.

U is permeable on qubit i⇔ UZi = ZiU (1)

Similarly, U is called X-permeable in qubit i if
it commutes with the X operator on this qubit.

For Z-permeability we gave a proof of the following
theorem in [8]. For the readers convenience, it can be
found in the appendix. In this work we expand the
statement to X-permeability.

Theorem 1 (Commutativity theorem). Let U
and V be n and m qubit operators, respectively.
If U is Z-permeable (X-permeable) in its last p
qubits and V is Z-permeable (X-permeable) in
its first p qubits, then the two operators com-
mute if they intersect only on these qubits:

(U ⊗ 1⊗m−p)(1⊗n−p ⊗ V)
=

(1⊗n−p ⊗ V)(U ⊗ 1⊗m−p)
(2)

The proof for the statement in the case of X-
permeability can be found in Appendix A.
According to the results proven in [8], determining
the permeability status for arbitrary gates is possible
in linear time (in the unitary size) if the unitary is
known. If the gate U is composite and only acting
via Z-permeable (X-permeable) gates on the qubit q,
Z-permeability (X-permeability) can be inferred with-
out the unitary. Furthermore, in Qrisp it is possi-
ble for the programmer to annotate function defini-
tions regarding their permeability status, implying in
practice permeability information very rarely has to
be inferred via unitary calculation. To highlight the
prevalence of permeability features, we now list some
common gates, which are permeable.

• Any RZ (RX) gate is Z-permeable (X-
permeable).

• Z, P, CZ, CP, CRZ, RZZ gates are Z-permeable
in all qubits.

• Any Pauli-X-gadget [9] (U(ϕ) = exp(iϕ⊗n
i=0 Xi))

is X-permeable in all qubits. The same applies
to Pauli-Z-gadgets.

• Global Mølmer-Sørensen gates [10] are X-
permeable (or Z depending on the hardware [11])
in all qubits.

• Any phase polynomial [12] and any diagonal
Hamiltonian evolution is Z-permeable in all in-
puts.

• Any (multi-)controlled gate is Z-permeable in any
control qubit. If the base gate is Z-permeable
(X-permeable), the controlled version is also Z-
permeable (X-permeable) on that qubit.

• Any gate Uf that realizes an out-of-place classical
function f in superposition, by acting as

Uf |x0⟩ · · · |xn⟩ |0⟩ = |x1⟩ · · · |xn⟩ |f(x0, . . . , xn)⟩
(3)

is Z-permeable in all input qubits. This especially
applies to all arithmetic functions.

• Quantum-quantum (modular) in-place adders
are permeable in the input that is not operated
on.

3 The permeability DAG
DAGs (directed acyclic graphs) have found manifold
application in quantum compilation [13–15]. In their
essence, DAGs are so useful because they can cap-
ture equivalence classes of reorderings of a given se-
quence. The DAG representation we construct here
is based on the ideas presented in the Unqomp [7],
however enriched by the concepts of Z/X-permeability.
This enables the permeability DAG to express equiva-
lence classes of quantum circuits, that are equivalent
according to the commutation relations induced by
Theorem 1. To leverage these, we extract circuit re-
orderings (with an invariant unitary) by determining
a topological sort of the DAG. Topological sorting al-
gorithms are however a wide class of techniques, which
allow us to select a procedure, that favors certain char-
acteristics of the circuit (like low circuit depth).

To elaborate the permeability DAG construction
procedure, we start by introducing the types of nodes
that can appear.

• Instruction nodes represent quantum instruc-
tions (like a CX gate).

• Allocation nodes represent qubit resources being
allocated.

2

q0 : • • •
q1 : Y
q2 : Y
q3 : Y

(a)

q0 : • • • X
q1 : Y •
q2 : Y •
q3 : Y •

(b)

(c) (d)

Figure 2: 2a, 2b Simple example circuits to demonstrate how the permeability DAG is built up. 2c The DAG constructed
according to the rules given in Section 3. The CY gates are Z-permeable on their control, so they form a streak. Note that
these gates commute according to Theorem 1, so any reordering of these gates result in a circuit with the same semantics (i.e.
unitary). A reordered version of the circuit however induces the same DAG, therefore the DAG indeed represents an equivalence
class of reorderings. 2d The Z-permeability streak of the CY gates is ended by applying a CX gate on q0, which is X-permeable
on that qubit. According to the DAG construction rules, the CX gate induces a terminator node connected with (purple)
anti-depedency edges. The following streak of X-permeable operations will therefore be guaranteed to end up behind the
Z-streak in a topological sort. For more examples please check Appendix B for a simple snippet producing pictures like these.

• Deallocation nodes represent qubits being deallo-
cated. The information about which qubits can
be deallocated is collected during Qrisp execu-
tion.

• Terminator nodes represent the end of a so called
streak which will be elaborated shortly.

To construct a permeability DAG from a quantum
circuit, we begin by adding an allocation node for each
qubit in the quantum circuit. Furthemore, for every
(composite) quantum gate and every deallocation we
add another node to the graph. To connect the nodes
we now introduce the types of edges:

• Z-edge (green).

• X-edge (red).

• Neutral edge (grey).

• Anti-dependency edge (purple).

For each instruction node, we check the permeabil-
ity status on the corresponding qubits ((de)allocation
nodes are treated to be neutral) and connect the edges.
Connecting the edges is done according to the follow-
ing rules. Let q be a qubit, that the subsequent gates
U1, U2 are operating on.

1. If U1 and U2 have differing permeability status in
q, a Z-edge (X-edge) is created from U1 to U2 if
U2 is Z-permeable (X-permeable) in q. If neither
is the case, a neutral edge is used instead.

2. If U1, U2 are both Z-permeable (X-permeable), in-
stead inserting a Z-edge (X-edge) from U1 to U2,
we let the edge start in U0, where U0 is the node,
which starts the edge to U1 (the “parent”). A se-
quence of more than one gate U1, ..Un acting on q
with the same permeability is therefore connected
to the same node, which we call a “streak”.

3. If Un+1 ends the streak U1, ..Un, that is Un+1 has
a different permeability type in q (or is neutral), a
terminator node is inserted and every node in the
streak receives an anti-dependency edge pointing
towards the terminator node. Finally an edge
representing the permeability of Un+1 in q is in-
serted pointing away from the terminator.

To get a thorough understanding, please check the
example in Fig. 2. We will now discuss the motiva-
tion behind these rules. Since the DAG will undergo
a topological sorting process, rule 1 enforces that two
subsequent gates acting on the same qubit will appear
in the correct order upon linearization. Rule 2 is de-
signed to reflect the commutation relations from The-
orem 1. Since all gates of the streak commute, they
are all connected to the same initial node U0. There-
fore, any valid reordering of the streak would yield
the same DAG. The anti-depedency edges in rule 3
ensure that in a linearization, the final gate ending
the streak will indeed always be executed last.

3

3.1 Comparison to the ZX-Calculus
We see the following similarities/differences between
our construction and the ZX-Calculus [16]:

• Both representations are based around certain
properties of quantum gates in the Z/X-base.

• The commutativity of primitive operations ex-
pressed by the permeability DAG is a special case
of the Spider Fusion Rule.

• ZX-Calculus expressions are undirected graphs
and can contain loops.

• The permeability DAG contains structural infor-
mation in the form of (de)allocation nodes and
terminator nodes that are of a fundamentally dif-
ferent type compared to the instruction node.

• The permeability DAG can abstract low level im-
plementations and represent properties of high-
level quantum functions. For instance, the com-
mutativity in the input of subsequent adders is
not immediately obvious in the ZX-calculus.

3.2 Comparison to the Unqomp-Graph
The following similarities/differences are found with
respect to the Unqomp DAG [7]:

• The Unqomp DAG only differentiates between
control, target and anti-depedency edges. Con-
ceptually, Z-edges can be identified with control
edges, target edges are either X or neutral. Anti-
depedency edges serve a similar purpose.

• With the above identifications, the permeability
DAG can be used to synthesize automatic uncom-
putation.

• The permeability DAG contains the terminator
node. The purpose of this node is mainly to
separate two subsequent streaks from each other,
which can’t happen in the Unqomp DAG, since
only the control edge type can have streaks.

• The Unqomp DAG contains allocation nodes but
no deallocation nodes. For the permeability
DAG, deallocation nodes play an essential role
when it comes to memory management tasks.

4 Topological Sorting
Now that we have the tools to build up the permeabil-
ity DAG from arbitrary quantum circuits, we can start
extracting equivalent reorderings of the circuit. We
do this by applying a topological sorting algorithm,
which is designed in such a way that certain charac-
teristics of the circuit are improved. In this section,
we describe three such algorithms for the following
purposes:

1. Automatic circuit parallelization in Section 4.1.

2. Memory management in Section 4.2.

4.1 Parallelization
The topological sorting algorithm for circuit paral-
lelization is based on a adapted version of Kahn’s
algorithm [18]. For reader convenience, we describe
the algorithm shortly:

Algorithm 1: Kahn’s Algorithm
Input: A directed acyclic graph G = (V, E)
Result: A list L of nodes in topologically

sorted order
Initialize the Queue;
Identify all nodes with an in-degree of 0;
Add these nodes to a queue Q;
Process the Queue;
while Q is not empty do

node← Dequeue(Q);
for each neighbor connected by an outgoing
edge from node do

Decrease the in-degree of neighbor by 1;
if in-degree of neighbor becomes 0 then

Enqueue(Q, neighbor);

Check for Cycles;
if any nodes still remain in the graph with a
non-zero in-degree then

Error: The graph has a cycle, topological
sort not possible;

Output the Result;
The sequence of nodes removed from the queue
represents the topological order of the graph;

Our hook to shaping the algorithm for our purpose
lies in the dequeuing step. Since we can choose an
arbitrary node from the queue, we can now deploy a
heuristic for picking a node that favors circuit depth.
Our strategy here is to rate all dequeuing options ac-
cording to a certain cost metric C and choose the node
with the lowest cost. We evaluated several cost met-
rics but focus our description on the one which pro-
duced the best results.
To describe the cost metric, we first need an additional
concept:

Definition 4.1 (Dynamic Qubit Depth).
Given is a quantum circuit Q described by a
sequence of gates (Ui)0≤i<n and a sequence of
durations (ti)0≤i<n, which indicates how long
each gate would take to execute on a given
physical device. The dynamic qubit depth
of the qubit k is the time Dk(Q) ∈ R, which is
required to execute the gate sequence until the
last gate operating on qubit k.

4

q0 : • • • • • • • •
q1 : P (γ0)
q2 : P (γ1)
q3 : P (γ2)
q4 : P (γ3)

(a)

q0 : • •
q1 : P(γ0)
q2 : P(γ1)
q3 : P(γ2)
q4 : P(γ3)

(b)

q0 : H •
ZZ (γ)

• RX (β)
q1 : H • •

ZZ (γ)
• RX (β)

q2 : H •
ZZ (γ) ZZ (γ)

RX (β)
q3 : H •

ZZ (γ)
• • RX (β)

q4 : H • RX (β)

(c)

q0 : H •
ZZ (γ)

• RX (β)
q1 : H • •

ZZ (γ)
• RX (β)

q2 : H •
ZZ (γ)

RX (β)
ZZ (γ)

q3 : H • •
ZZ (γ)

• RX (β)
q4 : H • RX (β)

(d)

Figure 3: 3a A circuit describing a descending chain of RZZ gates, where the T-depth scales like O(n) in circuit size. Such
circuits are a common occurence in QFT implementations or draper style adders [17]. 3b The resulting circuit after applying our
parallelization procedure optimizing for T-depth, leveraging the commutation relations among the CNOT gates. The T-depth is
now constant regardless of the circuit scale. 3d An example describing a p = 1 Max-Cut QAOA circuit. The CNOT depth is 10.
3c The QAOA circuit from 3d after applying the parallelization algorithm. The resulting CNOT depth is 6, which amounts to a
40% improvement. Note that our implementation also works for gates with unspecified parameters, since the permeability
features of the RZZ gates are independent of the particular choice of parameters. In a VQA setting, our algorithm can therefore
be applied once (before the optimization loop) instead of multiple times (before each iteration).

Determining the dynamic qubit depth can be
achieved with a tetris-like construction and is a
straightforward task. For the purpose of paralleliza-
tion, the values for each qubits can be cached and
reused in the next iteration, reducing classical re-
source requirements significantly.
Building on dynamic qubit depth allows our algorithm
to optimize quantum circuits not only towards a cer-
tain device class (e.g. NISQ/FT) but even towards
the particular device instances by feeding the gate-
timings.
Using the above concepts, our cost function is

C(i, ti, Q) =max(Dk(Q)|k ∈ QB(Ui))
+ti/(tmax + 1)

(4)

where

• Q is the circuit that has been produced by the

previous dequeuing events.

• QB(Ui) is the set of qubit indices that the gate
Ui is operating on.

• tmax = max(t) is the maximum amount of time
a gate can take.

We motivate the choice of these terms. Since all par-
ticipating qubits of Ui need to be finished with their
final gate, the first term essentially determines the
time when Ui can be executed. In a situation where
this time is equivalent for two separate gates, the sec-
ond term makes sure that the faster gate is executed
first. For an example of the effect of the paralleliza-
tion procedure please refer to Fig. 3.

5

4.1.1 Performance analysis

The complexity of Kahn’s algorithm is O(V + E) [18]
where V is the amount of vertices and E is the number
of edges. Applied to the permeability DAG, we infer
that every qubit port for each gate can amount for
at most two edges (one red/green/grey edge and one
anti-dependency edge). Assuming that the amount of
qubit ports per gate is bounded, we therefore deduce
that the complexity for the parallelization procedure
is O(N) where N is the amount of gates, which gives
our method a very favorable scaling even for problem
instances with a practically relevant scale.
The Qrisp implementation of the algorithm is
based on the high performance computing frame-
work Numba [19], which ensures that even for very
large circuits the parallelization step can be executed
with barely any delay. Please refer to Fig. 1 for a
benchmark of the algorithm applied to QAOA cir-
cuits. Apart from the smallest instance our method
improves the second best method by approximately
33%. Furthermore, our implementation is faster by
approximately one order of magnitude compared to
the second fastest implementation. For further bench-
marks of the technique please check the Appendix
of [4] where a Shor implementation has been opti-
mized for T-depth.

4.2 Memory Management
This section treats the problem of reordering the op-
eration sequence such that the amount of required
Qubits is optimized. To present this feature, the sec-
tion is divided into three subsections.

• In subsection 4.2.1, we elaborate how and why
reordering a circuit can have influence on the
amount of required qubits.

• Similar to the section on parallelization, in sub-
section 4.2.2, we construct a specialized algo-
rithm for topological sorting called Flex-Sort,
which caters to our requirements.

• In subsection 4.2.3, we demonstrate how Flex-
Sort is applied to the permeability DAG.

4.2.1 Why order matters

Within Qrisp the allocation events are triggered by
calling the QuantumVariable constructor and deallo-
cations can be achieved by calling either the .delete
or .uncompute method. On the level of the interme-
diate representation, (de)allocations are treated as a
particular kind of operation among the regular quan-
tum gates. To elaborate how topological sorting can
help to acquire a good allocation strategy, we intro-
duce the following concepts:

• A algorithmic qubit is a qubit which takes a par-
ticular role in an algorithm. Algorithmic qubits
are (de)allocated once.

• An execution qubit is a qubit in the optimized
quantum circuit and can host multiple algorith-
mic Qubits if their lifetime falls in distinct steps
of the algorithm.

To map a sequence of gates S operating on algorithmic
qubits to a quantum circuit with execution qubits, we
apply the following procedure:

1. Analyze S regarding how many algorithmic
qubits are allocated during peak load.

2. Create a new quantum circuit with that many ex-
ecution qubits and successively insert the corre-
sponding quantum gates. During this procedure
the pool of available execution qubits is managed
in the following way1

(a) The allocation of an algorithmic qubit qalg

chooses an execution qubit qex from the pool
according to a certain heuristic2. All subse-
quent operations on qalg are executed on qex

until deallocation.

(b) The deallocation of an algorithmic qubit qalg

returns the corresponding qex to the pool.

From this construction we see that the amount of
required qubits can be influenced by changing the
order of allocations. In particular, if a deallocation
event can be “pulled in front” of an allocation
event, which would trigger peak load, the amount of
required qubits decreases by one.

4.2.2 Flex-Sort

Our goal is therefore to find a reordering of the gate
sequence such that deallocations are executed as early
as possible and allocations are executed as late as pos-
sible. We achieve this reformulating another strat-
egy for DAG linearization: Depth-first traversal [20].

1By creating a circuit with even more than the required
execution qubits, it is possible to give the compiler the opportu-
nity to choose the allocated qubit from a bigger pool of choices.
This can significantly reduce circuit depth as the load can be
distributed. This feature is described as “workspace” within [4].

2To decide about the most suitable execution qubit, we
leverage the concept of dynamic qubit depth (defined earlier)
to determine which of the available execution qubits would be
free the earliest in an actual execution of the quantum circuit
that has been compiled so far.

6

Algorithm 2: Depth First Topological Sort
Data: A directed acyclic graph G = (E,V)
Result: A list L of nodes in topologically

sorted order
L← empty list to store the sorted nodes;
while nodes without a permanent mark exist do

select an arbitrary unmarked node n;
visit(n)

return L
Function visit(node n):

if n has a permanent mark then
return

if n has a temporary mark then
stop graph contains a cycle;

mark n with a temporary mark;
for each m ∈ V, (n, m) ∈ E do

visit(m);
mark n with a permanent mark;
add n to head of L;

To make this algorithm useful for our purposes, we
note that the visit function in its essence creates a
linearization of the subgraph desc(G, n)3 and inserts
it at the head of the result list L. Instead of using mul-
tiple recursions of the visit function, we now gener-
alize the algorithm such that an arbitrary blackbox
topological sorting (TS) algorithm can be used as a
“backend”.
Algorithm 3: Flex-Sort
Data: A directed acyclic graph G = (E,V)
An arbitrary topological sort algorithm TS
Result: A list L of nodes in topologically

sorted order
L← empty list to store the sorted nodes;
while G contains at least one node do

select an arbitrary node n;
K ← TS(anct(G, n));
extend L by K;
remove all K from G;

return L
Note that instead of using the descendants sub-

graph, we used the ancestors, which is essentially the
descendants of the transposed graph4. To make up for
this deviation we extend the resulting list L instead of
inserting the entries at the head of L. We denote this
algorithm “Flex-Sort” because it gives us the following
flexibility during execution:

• We can choose the backend TS.

• For each iteration, we can choose a suitable initial
node n.

An obvious choice for TS is the parallelization algo-

3desc(G, n) stands for the descendants subgraph of G in n
and comprises all nodes that are reachable starting in n

4The transpose of a directed graph G is the graph that is
acquired when flipping all the edges in the opposite direction.

rithm5, however any other topological sorting algo-
rithm is possible too. As elaborated above, it is our
goal to execute deallocation nodes as early as possible,
which is why we select this node type as the prioritized
starting nodes.

4.2.3 Deallocation order

But how to choose the order of deallocation nodes that
suits our efforts the most? For that we investigate the
DAG a bit more (prior to sorting). In particular, we
generate the ancestors subgraph for each deallocation
node and count how many allocations are required to
execute that particular deallocation. The deallocation
nodes are then ranked according to the amount of
allocations that are required to execute them.

We summarize our procedure: Given is a sequence
of operations S, a set of allocation events A ⊂ S, a
set of deallocation events D ⊂ S. The following steps
are taken to generate an equivalent reordering, which
executes the deallocations as early as possible and the
allocations as late as possible.

1. Generate the permeability DAG G of S

2. For each deallocation node d determine the ances-
tors subgraph anct(G, d) and count how many al-
locations are contained in that subgraph. Denote
this amount |A(d)|.

3. Create a list of deallocation nodes and sort it
according to the sorting key |A(d)|.

4. Execute the Flex-Sort algorithm by picking the
nodes of the list from the previous step as initial
nodes.

5. Iterate through the sequence generated in the
previous step and dynamically (de)allocate exe-
cution qubits as described in Section 4.2.1.

For an example of this procedure please consider
Fig. 4. Benchmarking this algorithm is difficult since
benchmark sets like [21] contain no deallocation infor-
mation. In practice we could verify for a variety of
examples that our algorithm finds an allocation strat-
egy requiring the optimal amount of qubits. This is
however not always the case.

4.2.4 Performance analysis

The above described procedure for establishing a
memory management strategy is more demanding
than the parallelization technique. It is however not

5In our implementation we avoid callig the parallelization
algorithm |D| times. Instead we call the parallelization algo-
rithm before memory management once and assign each node
an integer label corresponding to the nodes position in the lin-
earization. During memory management, this label is then used
as a sorting key for a regular sorting algorithm to emulate a
topological sort.

7

q0 : Z ⟨0|
q1 : • • • •
q2 : • • ⟨0|
q3 : Z ⟨0|

(a) (b)

q0 : • • • •
q1 : Z ⟨0| Z ⟨0|
q2 : • • ⟨0|

(c)

Figure 4: 4a A simple circuit containing some deallocations (marked by the ⟨0| gates). 4b The permeability DAG of 4a.
Note that the ancestors of the highest deallocation node contain only two allocation nodes. The ancestors of the lower two
contain three. Based on this information, our compiler chooses to perform the necessary quantum gates to perform the upper
allocation as early as possible, allocating only the minimal amount of qubits. 4c The resulting circuit after applying the memory
management topological sorting algorithm to the permeability DAG in 4b.

the topological sorting itself, which is more expen-
sive6 but instead determining the order of dealloca-
tion nodes, because this requires computing the ances-
tors graph for every deallocation node. In the worst
case the complexity is therefore O(|S| · |D|). However
this task can be parallelized (one thread for each deal-
location node). Within Qrisp this bottleneck is reme-
died by a parallel Numba [19] kernel, which performs
our technique with barely any delay for most mid-
term quantum algorithms. Additionally, the ancestors
function is available in the cuGraph framework [22],
which allows to outsource this task to clusters of GPU
hardware, implying even circuits with billions of gates
might be treatable.

5 Outlook
Even though the present article describes the perme-
ability DAG in terms of parallelization and memory
management, more use-cases are possible:

1. Light-cone reduction. Viewing the permeabil-
ity DAG as a representation of causally related
events, it is possible to filter out gates which do
not influence measurement results. In a different
words: It doesn’t matter whether a gate outside
of the light-cone of a measurement is executed.
We can use this fact to optimize quantum circuits
in that we remove every node from the permeabil-

6This is because the overall amount of edges can only be
lower if the graph is cut into several ancestor subgraphs.

ity DAG that is outside of the light-cone of the
intended measurements.

2. Peephole optimizations. The permeability DAG
can help with identifying peephole optimizations
that require adjacency. One example of this
is the simple gate sequence (Z, S, Z). The Z
gates cancel out but only because the sequence
can be arbitrarily reordered due to permeabil-
ity features. Less trivial examples could include
cancellation/merging of CX/CP gates or even
higher level semantics such as fusing two quan-
tum adders.

3. Dynamic parallelization. For circuits that con-
tain very long Z-permeable streaks7 it is possi-
ble to “quasi-copy” the value of the streak qubit
and therefore enable the access to the streak
qubit value via multiple qubits, facilitating an
improved circuit depth. Quasi-copy means dupli-
cating a computational basis state by applying a
CX gate into a freshly allocated qubit.

Apart from the mentioned potential use-cases, fur-
ther questions regarding the permeability DAG re-
main open:
Within Section 6 of [4], we describe our efforts to
restructure Qrisp to remedy compilation speed bot-
tlenecks but also to enable seamless hybrid algo-
rithm compilation. For this we leverage the Jax [23]

7An example for this phenomenon is the controlled call of a
composite quantum function. Every subroutine of this function
is individually controlled such that control qubit access is a
bottleneck.

8

framework, which exposes an interface for an extensi-
ble dynamic intermediate representation called Jaxpr.
Quantum algorithms expressed through Jaxprs can
not only contain classical control flow (such as loops
or conditionals) but also purely classical functions. As
such we are faced with the question how these Jaxpr
features can be embedded into the permeability DAG
framework to facilitate the described compilation al-
gorithms also for hybrid settings.

6 Summary
Within the present work we gave a rigorous defini-
tion of the concepts of Z/X-permeability, including
a proof that permeable gates commute if they only
intersect on permeable inputs. To make use of the
induced commutation relations, we constructed the
permeability DAG, which resembles the DAG defined
in the Unqomp algorithm [7]. Next to the synthesis of
uncomputation, the permeability DAG can be used to
find equivalent reorderings of the circuit by applying
a topological sorting algorithm. We describe two such
sorting algorithms, which are constructed to optimize
certain features of the resulting quantum circuit. The
first algorithm parallelizes quantum function calls to
reduce the depth of the overall circuit, whereas the
second method reorders the program instructions to
reduce peak quantum memory consumption. For both
of these algorithms we gave a rough complexity anal-
ysis. Our implementation in the Qrisp framework
shows that for near/mid-term quantum algorithms,
the introduced delay of the procedures is negligible.
Finally, we elaborated on further applications of the
permeability DAG and discussed its implementation
based on a more dynamic IR.

Code availability
Qrisp is an open-source Python framework for high-
level programming of quantum computers. The
source code is available in https://github.com/eclipse-
qrisp/Qrisp.

References
[1] Dolev Bluvstein, Simon J. Evered, and Alexan-

dra A. et al. Geim. “Logical quantum proces-
sor based on reconfigurable atom arrays”. Nature
626, 58–65 (2023).

[2] M. P. da Silva, C. Ryan-Anderson, and
J. M. Bello-Rivas et al. “Demonstration of
logical qubits and repeated error correction
with better-than-physical error rates” (2024).
arXiv:2404.02280.

[3] C. M. Löschnauer, J. Mosca Toba, and
A. C. Hugheset et al. “Scalable, high-fidelity all-

electronic control of trapped-ion qubits” (2024).
arXiv:2407.07694.

[4] Raphael Seidel, Sebastian Bock, and René Zan-
der et al. “Qrisp: A framework for compilable
high-level programming of gate-based quantum
computers” (2024). arXiv:2406.14792.

[5] Edward Farhi, Jeffrey Goldstone, and Sam Gut-
mann. “A quantum approximate optimization al-
gorithm” (2014). arXiv:1411.4028.

[6] E. N. Gilbert. “Random Graphs”. The Annals of
Mathematical Statistics 30, 1141 – 1144 (1959).

[7] Anouk Paradis, Benjamin Bichsel, and Samuel
et al. Steffen. “Unqomp: synthesizing uncom-
putation in quantum circuits”. In Proceedings
of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and
Implementation. Page 222–236. PLDI 2021New
York, NY, USA (2021). Association for Comput-
ing Machinery.

[8] Raphael Seidel, Nikolay Tcholtchev, and Se-
bastian et al. Bock. “Uncomputation in the
Qrisp high-level quantum programming frame-
work”. Page 150–165. Springer Nature Switzer-
land. (2023).

[9] Alexander Cowtan, Silas Dilkes, and Ross et al.
Duncan. “Phase gadget synthesis for shallow
circuits”. Electronic Proceedings in Theoretical
Computer Science 318, 213–228 (2020).

[10] Dmitri Maslov and Yunseong Nam. “Use of global
interactions in efficient quantum circuit construc-
tions”. New Journal of Physics 20, 033018 (2018).

[11] Sabine Wölk and Christof Wunderlich. “Quan-
tum dynamics of trapped ions in a dynamic field
gradient using dressed states”. New Journal of
Physics 19, 083021 (2017).

[12] Matthew Amy, Parsiad Azimzadeh, and Michele
Mosca. “On the controlled-not complexity of
controlled-not–phase circuits”. Quantum Science
and Technology 4, 015002 (2018).

[13] Joseph Clark, Travis Humble, and Himanshu
Thapliyal. “TDAG: Tree-based directed acyclic
graph partitioning for quantum circuits”. In Pro-
ceedings of the Great Lakes Symposium on VLSI
2023. Page 587–592. GLSVLSI ’23New York, NY,
USA (2023). Association for Computing Machin-
ery.

[14] Panagiotis Promponas, Akrit Mudvari, and Luca
Della Chiesa et al. “Compiler for distributed
quantum computing: a reinforcement learning
approach” (2024). arXiv:2404.17077.

[15] Giulia Meuli, Mathias Soeken, and Giovanni
Micheli. “Xor-and-inverter graphs for quantum
compilation”. npj Quantum Information8 (2022).

9

https://github.com/eclipse-qrisp/Qrisp
https://github.com/eclipse-qrisp/Qrisp
https://dx.doi.org/10.1038/s41586-023-06927-3
https://dx.doi.org/10.1038/s41586-023-06927-3
http://arxiv.org/abs/2404.02280
http://arxiv.org/abs/2407.07694
http://arxiv.org/abs/2406.14792
http://arxiv.org/abs/1411.4028
https://dx.doi.org/10.1214/aoms/1177706098
https://dx.doi.org/10.1214/aoms/1177706098
https://dx.doi.org/10.1145/3453483.3454040
https://dx.doi.org/10.1007/978-3-031-38100-3_11
https://dx.doi.org/10.4204/eptcs.318.13
https://dx.doi.org/10.4204/eptcs.318.13
https://dx.doi.org/10.1088/1367-2630/aaa398
https://dx.doi.org/10.1088/1367-2630/aa7b22
https://dx.doi.org/10.1088/1367-2630/aa7b22
https://dx.doi.org/10.1088/2058-9565/aad8ca
https://dx.doi.org/10.1088/2058-9565/aad8ca
https://dx.doi.org/10.1145/3583781.3590234
http://arxiv.org/abs/2404.17077
https://dx.doi.org/10.1038/s41534-021-00514-y

[16] Bob Coecke and Ross Duncan. “Interacting
quantum observables: categorical algebra and
diagrammatics”. New Journal of Physics 13,
043016 (2011).

[17] Thomas G. Draper. “Addition on a quantum com-
puter” (2000). arXiv:quant-ph/0008033.

[18] A. B. Kahn. “Topological sorting of large net-
works”. Commun. ACM 5, 558–562 (1962).

[19] Siu Kwan Lam, Antoine Pitrou, and Stanley Seib-
ert. “Numba: a LLVM-based python JIT com-
piler”. In Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC.
LLVM ’15New York, NY, USA (2015). Associa-
tion for Computing Machinery.

[20] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. et al. Rivest. “Introduction to algo-
rithms, third edition”. The MIT Press. (2009).
3rd edition.

[21] Nils Quetschlich, Lukas Burgholzer, and Robert
Wille. “MQT Bench: Benchmarking software and
design automation tools for quantum computing”.
Quantum (2023).

[22] Seunghwa Kang, Joseph Nke, and Brad Rees.
“Analyzing multi-trillion edge graphs on large
gpu clusters: A case study with pagerank”. In
2022 IEEE High Performance Extreme Comput-
ing Conference (HPEC). Pages 1–7. (2022).

[23] Roy Frostig, Matthew Johnson, and Chris Leary.
“Compiling machine learning programs via high-
level tracing”. In SYSML’18, Stanford, CA USA.
(2018). url: https://mlsys.org/Conferences/
doc/2018/146.pdf.

Appendix

A Proof of Theorem 1
This appendix contains the proofs for Theorem 1 from
Section 2. In order to prove Theorem 1, we first need
the following theorem.

Theorem 2. Let U ∈ U(2n) be an n-qubit op-
erator. If U is Z-permeable on the first p qubits,
there are operators Ũ0, Ũ1, . . . , Ũ2p−1 such that:

U =
2p−1∑
i=0
|i⟩ ⟨i| ⊗ Ũi. (5)

Proof. We will treat the case p = 1 first and generalize
via induction afterwards.
We start by inserting identity operators 1 =

∑
i=0 |i⟩ ⟨i|:

U =1U1 (6)

=
1∑

i,j=0
|i⟩ ⟨i|U |j⟩ ⟨j| (7)

=
1∑

i,j=0
|i⟩ ⟨j| ⊗ Ûij . (8)

where Ûij = ⟨i|U |j⟩. Due to the Z-permeability con-
dition, we have

0 =Z0U − UZ0

=
(1∑

k=0
(−1)k |k⟩ ⟨k| ⊗ 1⊗n−1

) 1∑
i,j=0

|i⟩ ⟨j| ⊗ Ûij

−

 1∑
i,j=0

|i⟩ ⟨j| ⊗ Ûij

(1∑
k=0

(−1)k |k⟩ ⟨k| ⊗ 1⊗n−1

)

=
1∑

i,j,k=0
(−1)k

(
|k⟩ ⟨k|i⟩ ⟨j| ⊗ Ûij − |i⟩ ⟨j|k⟩ ⟨k| ⊗ Ûij

)

=
1∑

i,j,k=0
(−1)k (|k⟩ ⟨k|i⟩ ⟨j| − |i⟩ ⟨j|k⟩ ⟨k|)⊗ Ûij

=
1∑

i,j=0

(
(−1)i |i⟩ ⟨j| − (−1)j |i⟩ ⟨j|

)
⊗ Ûij .

(9)

From this form, we see that the index constellations,
where i = j cancel out. We end up with

0 = 2(|0⟩ ⟨1| ⊗ Û01 − |1⟩ ⟨0| ⊗ Û10). (10)

Since both summands act on disjoint subspaces, we
conclude

Û01 = 0 = Û10. (11)

Finally, we set

Ũ0 = Û00

Ũ1 = Û11
(12)

yielding the claim for p = 1. To complete the proof
we give the induction step, that is, we prove the claim
for p = p0 + 1 under the assumption that it is true for
p = p0: Since U is permeable on qubit p0 + 1, we have

0 =Zp0+1U − UZp0+1 (13)

As the claim is true for p = p0, we insert

U =
2p0 −1∑

i=0
|i⟩ ⟨i| ⊗ Ũi (14)

yielding

0 =
2p0 −1∑

i=0
|i⟩ ⟨i| ⊗ (Zp0+1Ũi − Zp0+1Ũi) (15)

10

https://dx.doi.org/10.1088/1367-2630/13/4/043016
https://dx.doi.org/10.1088/1367-2630/13/4/043016
http://arxiv.org/abs/quant-ph/0008033
https://dx.doi.org/10.1145/368996.369025
https://dx.doi.org/10.1145/2833157.2833162
https://dx.doi.org/10.1109/HPEC55821.2022.9926341
https://mlsys.org/Conferences/doc/2018/146.pdf
https://mlsys.org/Conferences/doc/2018/146.pdf

Since each of the summand operators acts on disjoint
subspaces, we conclude

0 = Zp0+1Ũi − Zp0+1Ũi (16)

This, as shown above, implies

Ũi =
1∑

j=0
|j⟩ ⟨j| ⊗ (Ũi)j . (17)

Finally, we insert this form into eq. 14 to retrieve the
claim for p = p0 + 1:

U =
2p0+1−1∑

i=0
|i⟩ ⟨i| ⊗ Ũi (18)

Having proved the above theorem, the next step
is to employ it in the proof of Theorem 1 for Z-
permeability.

Proof. According to Theorem 2 we can write

(U ⊗ 1⊗m−p) =
2p−1∑
i=0

Ũi ⊗ |i⟩ ⟨i| ⊗ 1⊗m−p (19)

(1⊗n−p ⊗ V) =
2p−1∑
j=0

1
⊗n−p ⊗ |j⟩ ⟨j| ⊗ Ṽj (20)

Multiplying these operators gives

(U ⊗ 1⊗m−p)(1⊗n−p ⊗ V)

=
(2p−1∑

i=0
Ũi ⊗ |i⟩ ⟨i| ⊗ 1⊗m−p

)
2p−1∑

j=0
1

⊗n−p ⊗ |j⟩ ⟨j| ⊗ Ṽj

=

2p−1∑
i,j=0

Ũi ⊗ |i⟩ ⟨i|j⟩ ⟨j| ⊗ Ṽj

=
2p−1∑
i=0

Ũi ⊗ |i⟩ ⟨i| ⊗ Ṽi

(21)

Multiplication in reverse order yields the same result:

(1⊗n−p ⊗ V)(U ⊗ 1⊗m−p)

=

2p−1∑
j=0

1
⊗n−p ⊗ |j⟩ ⟨j| ⊗ Ṽj

(2p−1∑

i=0
Ũi ⊗ |i⟩ ⟨i| ⊗ 1⊗m−p

)

=
2p−1∑
i,j=0

Ũi ⊗ |j⟩ ⟨j|i⟩ ⟨i| ⊗ Ṽj

=
2p−1∑
i=0

Ũi ⊗ |i⟩ ⟨i| ⊗ Ṽi

(22)

From this we conclude the claim.

Finally, we generalize the proof from just Z-
permeability to X-permeability.

Proof. Let U, V satisfy the given conditions for X-
permeability. We define two auxiliary operators

Ũ = H≥n−pUH≥n−p (23)
Ṽ = H<pV H<p (24)

The notation H<p here implies that Hadamard gates
are applied to all qubits with an index < p. We observe
that Ũ , Ṽ are both Z-permeable on the relevant qubits.
To see this, let 0 ≤ k < p:

ZkṼ = HkXkHkṼ

= HkXkH<p, ̸=kV H<p

= HkH<p, ̸=kXkV H<p

= H<pV XkHkH<p, ̸=k

= H<pV H<pHkXkHk

= H<pV H<pZk

= Ṽ Zk

(25)

Obviously, a similar reasoning holds vor Ũ . Using
the Z-permeability commutativity theorem, we deduct
that Ũ , Ṽ commute if they only intersect on the rele-
vant qubits.

(Ũ ⊗ 1⊗m−p)(1⊗n−p ⊗ Ṽ)
=

(1⊗n−p ⊗ Ṽ)(Ũ ⊗ 1⊗m−p)
(26)

By wrapping both sides of the equation into Hadamard
gates, we obtain the statement:

H≥n−p,<n(Ũ ⊗ 1⊗m−p)(1⊗n−p ⊗ Ṽ)H≥n−p,<n

=
H≥n−p,<n(1⊗n−p ⊗ Ṽ)(Ũ ⊗ 1⊗m−p)H≥n−p,<n

⇔
(U ⊗ 1⊗m−p)(1⊗n−p ⊗ V)

=
(1⊗n−p ⊗ V)(U ⊗ 1⊗m−p)

(27)

B Permeability Graph Code

In the following, we provide some Qrisp code to re-
produce or alter the plots in Fig. 2.

11

from qrisp import *
qc = QuantumCircuit(4)

Z-permeable streak
qc.cy(0,1)
qc.cy(0,2)
qc.cy(0,3)

X-permeable streak
qc.cx(1,0)
qc.x(0)
qc.mcx([2,3],0)

dag = PermeabilityGraph(qc)
dag.draw()

As a subclass of networkx.DiGraph, the permeabil-
ity graph object can be processed by a variety of Net-
workx algorithms.

12

	Introduction
	Permeability
	The permeability DAG
	Comparison to the ZX-Calculus
	Comparison to the Unqomp-Graph

	Topological Sorting
	Parallelization
	Performance analysis

	Memory Management
	Why order matters
	Flex-Sort
	Deallocation order
	Performance analysis

	Outlook
	Summary
	Code availability
	References
	Appendix
	Proof of Theorem 1
	Permeability Graph Code

