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1. Extended Abstract

Introduction. In the QRAM model of quantum computation [Kni96], a classical computer interacts with a

quantum processor by instructing the latter to create new qubits, applying some unitary transformations to

the existing qubits or by measuring some of of them. In other words, computation consists in a sequence of

exchanges between the classical computer and the quantum processor until an end result (the value of which

is intrinsically probabilistic) is obtained. Obviously, the classical computer and the quantum processor do not

follow the same rules: while the former is a purely classical device, the latter has to obey the laws of quantum

physics. In particular, no quantum data can ever be erased or duplicated and the operations the quantum

processor can perform are of a very specific shape.

In order to manipulate this model, several quantum programming languages have been developed, from

assembly code [CJAA
+
22], to imperative programming languages with loops and classical tests [FY21] to

functional programming language such as the quantum λ-calculus [SV+
09]. All of those languages share the

same core principle: they manipulate an external quantum memory and can apply quantum operations to

it, seen as a black-box. As the program is executed, the quantum memory is updated until it reaches a final

state. As such, then, they precisely follow the QRAM model. A different family of programming languages

[Lem24, DCD24, ADCV17] are instead more focused on what happens inside the quantum memory and allow

the user to write custom-made quantum operations.

In spite of this profusion, some of the principles underlying such quantum programming languages are

in sharp contrast with what happens in practice: quantum architectures are often very hard to be accessed

interactively, and require a whole, closed circuit, to be sent to them. The latter is then processed and optimized

as a whole. As a result, quantum programs are often written down in minimalistic programming languages for

quantum circuits [CJAA
+
22, FY21], or in circuit description languages like Qiskit or Cirq, which manipulate

circuits as ordinary data structures.

The question that motivates our work is thus: would it be possible to compile the QRAM languages, and in

particular those with higher-order functions [SV
+
09], down to quantum circuits? The difficulty of answering

this question stems from the inherently interactive nature of the semantics of those languages, as well as from

the fact that some of them include higher-order functions. More specifically, would it be possible to compile

programs in these languages to quantum circuits, getting rid of higher-order features, and also preemptively

executing all classical operations?
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One notable work in this direction is the language Qunity [VLRH23], which offers a higher-order quan-

tum programming language with classical control together with a full compilation scheme towards Open-

QASM [CJAA
+
22]. However, Qunity does not feature a rewriting system and hence it cannot be executed. This

limits greatly the higher-level reasoning that can be done on this language.

Contributions. In this work we propose a new compilation procedure for the linear fragment of the quantum

lambda calculus [SV
+
09] onto the quantum circuit model QASM2. Notably, our procedure gets rid of both

higher-order operations and classical control, and thus provides an effective method to answer the following

question: given some well-typed term (with first-order type), what is the underlying circuit that was executed?

The fundamental ingredient of our approach is Girard’s Geometry of Interaction (GoI) [Gir89b, Gir89a], a

method coming from linear logic which can be used to translate a typing derivation for a higher-order λ-calculus
into a suitable abstract machine [Mac95, Ghi07, ADLV20]. The basic idea of the GoI translation is that, given a

type derivation Γ ⊢ M : A for a termM , one introduces a finite set of tokens which can travel along occurrences

of base types in Γ and A throughout the derivation; the paths followed by such tokens give then rise to a sort of

circuit relating positive and negative occurrences of ground types in Γ ⊢ M : A. In our approach we consider

typing derivations for a linear quantum λ-calculus, and, by following the paths of tokens a quantum circuit

is progressively produced, with inputs and outputs corresponding, respectively to the negative and positive

occurrences of the types bit and qbit. For instance, a type derivation x : qbit, y : qbit ⊢ M : qbit⊗ qbit

(whereM might indeed contain higher-order operations as well as if-then-else control instructions over bits)

will give rise, after compilation, to a standard quantum circuit with two input qubits and two output qubits.

The framework of GoI has already been applied in the context of quantum computing [DLFVY17], yet in

that case the token trajectories are probabilistic, and provide an alternative way to fully execute the term on a

quantum input. By contrast, our approach is fully deterministic, and, instead of executing the term, it produces

a (yet to be executed) quantum circuit.

Our compilation procedure works in two steps: first, the typing derivation of the term is translated via the

GoI onto a language for quantum circuits with classical control. Then, a second compilation takes place, which

translates the circuit onto a QASM2 circuit, notably eliminating the use of classical control flow.

In this talk, beyond presenting the compilation procedure, we establish its soundness: we prove that,

whenever a term M of the linear quantum lambda-calculus, on a given input state |ϕ⟩, produces a state |ϕ′⟩
after rewriting, then the circuit produced by compilingM , on input state |ϕ⟩, will also evaluate to |ϕ′⟩. To prove
the soundness for the first part of the compilation procedure we exploit a simulation result with respect to the

aforementioned GoI translation of the quantum λ-calculus [DLFVY17]. For the second part, we argue via the

standard quantum circuit semantics of completely positive maps [Sel04].
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