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We introduce an improved CNOT synthesis algorithm that considers nearest-neighbour interactions and
CNOT gate error rates in noisy intermediate-scale quantum (NISQ) hardware. Compared to IBM’s Qiskit
compiler, it improves the fidelity of a synthesized CNOT circuit by about 2 times on average (up to 9 times).
It lowers the synthesized CNOT count by a factor of 13 on average (up to a factor of 162).

Our contribution is twofold. First, we define a Cost function by approximating the average gate fidelity
Favg. According to the simulation results, Cost fits the error probability of a noisy CNOT circuit, Prob =
1−Favg, much tighter than the commonly used cost functions. On IBM’s fake Nairobi backend, it matches
Prob to within 10−3. On other backends, it fits Prob to within 10−1. Cost accurately quantifies the dynamic
error characteristics and shows remarkable scalability. Second, we propose a noise-aware CNOT routing
algorithm, NAPermRowCol, by adapting the leading Steiner-tree-based connectivity-aware CNOT synthesis
algorithms. A weighted edge is used to encode a CNOT gate error rate and Cost-instructed heuristics
are applied to each reduction step. NAPermRowCol does not use ancillary qubits and is not restricted to
certain initial qubit maps. Compared with algorithms that are noise-agnostic, it improves the fidelity of a
synthesized CNOT circuit across varied NISQ hardware. Depending on the benchmark circuit and the IBM
backend selected, it lowers the synthesized CNOT count up to 56.95% compared to ROWCOL and up to
21.62% compared to PermRowCol. It reduces the synthesis Cost up to 25.71% compared to ROWCOL
and up to 9.12% compared to PermRowCol. Our method can be extended to route a more general quantum
circuit, giving a powerful new tool for compiling on NISQ devices.
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1 Introduction

The current phase of quantum technology is called "Noisy Intermediate-Scale Quantum" (NISQ) [56]. It is
defined by the number of physical qubits (i.e., approximately between 50 and a few hundred) and their “noisy”
nature (e.g., erroneous gate operation). Recently, the focus has shifted from merely increasing the number of
qubits to enhancing their quality and error-correction capabilities [1, 11, 13, 53, 60, 61, 67, 72]. This marks
a transition toward more reliable and practical quantum computing, namely, the “Logical Intermediate-Scale
Quantum” (LISQ) [63].

Despite these pivotal changes, the current and near-future landscape is still dominated by NISQ devices [4,
5, 7, 38, 54, 55]. They allow researchers to explore the potential of quantum computers and carry out various
tasks such as quantum simulation [8], combinatorial optimization [24], cryptography [31], and quantum chem-
istry [10]. Therefore, it is necessary and important to improve compilation methods tailored to NISQ devices
and minimize the resource overhead [15, 30, 36].

Quantum circuit routing is the problem of mapping a logical circuit to NISQ hardware. The connectiv-
ity of NISQ architecture restricts a two-qubit gate to adjacent qubits, while various noise sources impact the
reliability of quantum computations. An optimal solution to quantum circuit routing minimizes the resource
overhead and maximizes the success probability of running a NISQ-executable circuit [17, 45, 46].
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1.1 Problem of Interest

The main source of error in a NISQ device comes from entangling gates, whose error rates differ by a huge
margin. These gates serve as a major component of many quantum programs. Although CNOT gates are not the
native entangling operations in most NISQ hardware, they are commonly used in theoretical quantum circuits
and algorithm designs. Since logical quantum circuits are transpiled to the device’s native gate set and a CNOT
gate is equivalent to a native entangling gate up to local operations, we consider CNOT gates for simplicity. For
instance, IBM’s quantum devices use the Echoed Cross-Resonance (ECR) gate as their entangling operation.
It is equivalent to a CNOT gate up to single-qubit pre-rotations [20, 69]. Since CNOT error rate is about an
order of magnitude higher than the single-qubit gate error rate [19, 46], the errors introduced by pre-rotations
are relatively small. As a result, the CNOT error rate is about the same magnitude as that of an ECR gate.

Noise-aware CNOT circuit routing is a subproblem of quantum circuit routing where the logical circuits
are composed of only CNOT gates. It accounts for the hardware connectivity and CNOT error rate to success-
fully route a CNOT circuit in a scalable manner [16, 74]. Although it is not immediately applicable for mapping
a quantum program to NISQ devices, we can always decompose a quantum circuit into a layer of CNOT gates,
followed by single-qubit gates, and then another layer of CNOT gates and so on [25]. Hence, in this paper,
we focus on routing a noisy CNOT circuit, with the goal of reducing the resource overhead and improving the
execution success probability.

CNOT circuits have well-behaved mathematical structures. The output parity terms of an n-qubit CNOT
circuit correspond to an n× n parity matrix over F2, a non-singular binary square matrix. By using Gaussian
elimination, we can decompose the parity matrix into a sequence of row operations, each of which corresponds
to a CNOT gate [3, 52]. After concatenating these gates, we obtain a circuit with the same semantics as the
input CNOT circuit (Section 2.2). This process is also called CNOT circuit synthesis.

Connectivity-aware CNOT circuit synthesis (a.k.a., CNOT circuit routing) takes a logical CNOT circuit
and a uniform edge-weighted connectivity graph as inputs. It ignores the error distribution of different CNOT
gates and returns a sequence of physically allowed CNOT operations. In literature, the connectivity constraint is
also called the nearest-neighbour (NN) interaction. SWAP-based synthesis is one of the predominant methods
to route a quantum circuit by relocating logical qubits in quantum registers [41, 66, 70, 73]. A major downside
is that a SWAP gate equals three CNOT gates, so adding SWAP gates to quantum circuits results in an explosion
of CNOT count.

Alternatively, Steiner-tree-based synthesis uses the parity matrix representation of a CNOT circuit and exist-
ing heuristics to optimize the synthesized CNOT count (Section 2.3). As a variant of a minimum-spanning tree,
a Steiner tree finds the shortest path to connect a given set of vertices, corresponding to the shortest sequence
of CNOT gates to route a subcircuit. Compared to simply inserting SWAP gates, reducing connectivity-aware
CNOT circuit synthesis to a Steiner tree problem suppresses the CNOT explosion [25, 26, 27, 39, 48, 68].

For a quantum computer to be powerful, we should consider not only the idealized computation model,
but also the imperfections and variations in the real system. Most of the leading Steiner-tree-based algorithms
assume a uniform error distribution across the quantum system and use the synthesized CNOT count as their
cost function. In practice, the error rate of each CNOT gate varies significantly depending on the coupled qubits’
unique properties, their system positions, and the nature of the interactions they participate in. If certain qubits
or connections have higher error rates, using them frequently might decrease the execution’s accuracy, even
when the overall gate count is reduced. For example, a routing path that minimizes CNOT count may choose
more expensive edges (i.e., CNOT gates with higher error rates). It is unclear how closely the synthesized
CNOT count aligns with the accumulated error in a noisy CNOT circuit.

1.2 Our Contributions

In this work, we focus on improving the fidelity of a NISQ-executable CNOT circuit. First, we approximate
its average gate fidelity and propose a scalable Cost function to gauge its quality. In Section 3, we formally
derive Cost by assuming CNOT gates are not parallelized and there is no noise on idle qubits. While these
seem to be strong assumptions, we show that compared to the intuitively defined cost functions [16, 46, 74],
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Cost fits the error probability of a noisy CNOT circuit tightly, for varied hardware topology and error dis-
tribution (Section 5.1). To the best of our knowledge, no one before us has investigated what is a good and
scalable approximation of a CNOT circuit’s reliability. Cost is the first attempt towards an efficient and accu-
rate quantification of a noisy quantum circuit’s reliability, rather than simply summing up the gate error rates
or estimating the error probability disregarding the system size.

Next, we apply Cost to make a noise-aware adaptation of the algorithm PermRowCol [26], which is the
leading Steiner-tree-based connectivity-aware CNOT circuit synthesis algorithm. In Section 4, we propose
the algorithm NAPermRowCol to account for the connectivity and noise constraints. It not only returns a
synthesized circuit with allowed CNOT operations and increased reliability, but also reduces the CNOT count
by factoring out SWAP gates. Our technique can be summarized in two key points. First, it uses a noise-aware
heuristic for pivot selection before each reduction step. Second, it prioritizes the cheapest way to route a noisy
CNOT subcircuit. More precisely, it minimizes the cost to (1) propagate a parity 1 from one of all terminal
nodes to a fixed Steiner node in each column reduction’s first step, or (2) propagate the parity of a fixed Steiner
node to one of all terminal nodes in each row reduction’s first step.

Compared with GENNS [74], NAPermRowCol is not restricted to certain initial qubit maps. Compared
with Qiskit [41], it uses no ancilla and is thus more resource-efficient. Compared to the leading CNOT routing
algorithms, our benchmark results show that NAPermRowCol consistently improves the fidelity of a synthe-
sized CNOT circuit across varied topologies (Section 5.2). Moreover, it reduces the synthesized CNOT count,
shortening the circuit execution time.

1.3 Open Problems and Discussions

While noise-aware CNOT circuit routing is not immediately applicable to NISQ devices, our results pave the
way to a fully noise-aware routing strategy. Here, we outline how NAPermRowCol could be extended to route
a noisy quantum circuit over a universal gate set.

On one hand, we need an efficient cost function to quantify a noisy circuit’s reliability. For noisy CNOT
circuits, we use a generalized Pauli channel to model noise, assuming CNOT gates are not parallelized and idle
qubits are noiseless. Although our empirical study shows that Cost approximates Prob closely, these simplifi-
cations make our cost function less general. A major room for improvement is to drop these assumptions.

For example, the generalized Pauli channels are a widely applicable model in quantum information, but
they do not encompass all possible completely positive maps (e.g., complex multi-qubit interactions, non-Pauli
types of noise and decoherence). Modelling a noisy quantum circuit with a more general channel representation
is an important avenue for future work. Additionally, we should allow gate parallelization and account for errors
resulting from the T1/T2 time. Moreover, we should consider single-qubit gate errors and readout errors arising
from qubit state measurement. Depending on the quantum computing platform, we should also factor in error
sources such as thermal relaxation and crosstalk.

In summary, the new cost function should accurately and efficiently quantify the dynamic error character-
istics of a NISQ-executable circuit. Next, we can combine it with various circuit synthesis frameworks [25, 44,
47] to generalize NAPermRowCol and route an arbitrary quantum program on NISQ hardware. This includes
designing noise-aware heuristics on a vertex-and-edge-weighted Steiner tree. We will then enhance the routed
circuit’s reliability by reducing the cost evaluation.

On the other hand, a routing algorithm’s performance may decrease as the system scales with the qubit
count and circuit complexity. For example, NAPermRowCol shows modest improvements when synthesizing
a CNOT circuit over more than 16 qubits. This means we may need to refine the noise-aware heuristics to
improve a routing algorithm’s scalability.

1.4 Related Work

Substantial progress was made to understand noise within a quantum system [28, 29, 32, 50, 62, 64]. The prob-
lem of quantum circuit routing was introduced in [45]. Since then, numerous papers have appeared studying
this problem [16, 35, 45, 46, 51, 58, 69, 74]. Most of them use intuitive cost functions without formal basis. As
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cost function is a vital metric to improve the reliability of a NISQ-executable circuit, it is important to quantify
a system’s noise accurately and efficiently. In what follows, we describe in more detail those closely related to
what we do.

[45] proposes a routing strategy tailored to Nuclear Magnetic Resonance (NMR) quantum computers. It
uses circuit runtime as a cost function and inserts SWAP gates for quantum circuit routing. When testing its
performance and scalability, the authors assume a linear architecture with a uniform interaction time between
adjacent qubits. This is no longer a reasonable assumption for the leading NISQ devices. Moreover, NMR has
largely been overshadowed by more practical quantum technologies, whose hardware topology is better suited
for reliable and scalable quantum computing. For example, as of 2021, the topology of all active IBM quantum
computers is based around the heavy-hex lattice. In each cell of the lattice, qubits are arranged in a hexagon,
with an additional qubit on each edge [49]. Therefore, it is of pressing importance to develop noise-aware
circuit routing strategies tailored to these state-of-the-art NISQ architectures.

[69] does not employ a cost function but instead suggests a noise-aware partition of a weighted connectivity
graph as a preprocessor for IBM’s Qiskit transpiler. According to user-defined error thresholds, it gets rid of
disconnected vertices and graph components with high CNOT or readout error rates. Compared to Qiskit’s
inherent binary classification on whether a qubit is faulty or not, it takes advantage of the quantum processor’s
noise profile to make adaptive topology-pruning decisions.

[74] proposes the algorithm GENNS to route a CNOT circuit on IBM’s NISQ devices. It enhances the
routed circuit’s reliability by accounting for the NN interactions and CNOT error rates. These restrictions are
encoded in an edge-weighted connectivity graph. Among all pairs of connected qubits, GENNS uses the sum
of edge weights as a cost function and applies the Floyd-Warshall algorithm [21] to find the shortest path. Since
the cost function is proposed without a formal basis, GENNS may not return the most reliable routed circuit.
Moreover, it is restricted to a feasible initial qubit map, or its reduction step terminates upon an invalid row
operation. In the empirical study, GENNS is benchmarked with relatively short CNOT circuits (containing up
to 256 gates) on 5- and 20-qubit backends. It is unclear how scalable and adaptive GENNS is for synthesizing
a large CNOT circuit on varied IBM’s backends.

[16, 46] propose comprehensive compiling strategies that are also customized for IBM’s architecture. They
encapsulate a noise-aware initial qubit mapping and a subsequent routing of the mapped circuit. [16] con-
centrates on routing a noisy CNOT circuit and proposes a Steiner-tree-based synthesis algorithm. It uses path
fidelity (the product of CNOT success rates) as its cost function to instruct path selections in a Steiner tree.
However, it is not clear how this cost function is related to the routed circuit reliability. [46] offers a collec-
tion of optimization- and heuristic-based methods to map an arbitrary quantum program to NISQ hardware. It
accounts for CNOT and readout errors, as well as the connectivity and gate scheduling constraints. Its tech-
nique can be summarized in two key points. First, it reduces the problem of finding an optimal initial qubit
mapping to a constrained optimization problem. Based on the linearized reliability score (i.e., the logarithm
of the product of the CNOT gate and measurement success rates), it leverages the quantum analogue of the
Satisfiability Modulo Theory (SMT) solver to find an optimal solution. Second, it proposes greedy heuristics
that have comparable performance to the SMT-based methods, with improved scalability. Both approaches use
SWAP gates for circuit routing and focus on an obsolete IBM grid topology in their empirical study.

2 Preliminaries

Here we review the core concepts for synthesizing a CNOT circuit on NISQ hardware. In Section 2.1, we
introduce notions and conventions that will be used in this paper. In Section 2.2, we define the parity matrix
representation of a CNOT circuit and use it to synthesize a noiseless CNOT circuit without any connectivity
constraint. This is also known as the “CNOT circuit synthesis”. In Section 2.3, we introduce the Steiner tree, a
variant of the minimum spanning tree, and use it to synthesize a noiseless CNOT circuit based on a hardware
topology. This is also known as the ”connectivity-aware CNOT circuit synthesis”. In Section 2.4, we define
the average gate fidelity for a noisy quantum circuit and motivate noise-aware CNOT circuit routing on NISQ
hardware.
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2.1 Notations and Conventions

I denotes an identity operator (a.k.a, identity matrix), whose dimension can be inferred from the context. C
denotes the set of complex numbers, N denotes the set of nonnegative integers, N̸=0 = N\{0}, and Zq denotes
the set of integers {0,1, . . . ,q−1}. LHS (RHS) is short for the “lefthand (righthand) side” of an equation. Tr[A]
denotes the trace of a matrix A. It is the sum of elements on the main diagonal of A. A⊤ denotes the transpose
of matrix A. The Pauli matrices are 2×2 unitary operators acting on a single qubit. Let i be the imaginary unit,
i4 = 1.

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

By direct computation, Tr[I] = 2, Tr[X ] = Tr[Y ] = Tr[Z] = 0.

Definition 2.1. For n ∈ N ̸=0, let Cn be the n-qubit Clifford group. Cn is generated by H, S, and CNOT gates
through tensor product and composition. Cn = ⟨H, S, CNOT ⟩, where

H =
1√
2

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1)

Remark 2.1. C1 = ⟨H,S⟩.

CNOT gate is short for the “controlled-not gate”. It is a quantum gate acting on two qubits. Its unitary
matrix is shown in Equation (1). A CNOT circuit is a circuit composed of only CNOT gates. On top of the
unitary matrix representation, there are different ways to represent a CNOT circuit. In this paper, they are
used based on the problem that we are trying to solve. The parity matrix is often used to represent a logical
CNOT circuit (Definition 2.3). The Kraus decomposition (Definition 2.16) and the superoperator representation
(Lemma 2.7) are often used to represent a noisy CNOT circuit.

When the qubit count n increases, the parity matrix size grows polynomially with n, while the unitary matrix
size grows exponentially. Therefore, the parity matrix representation is scalable and convenient for different
instances of the CNOT routing problem. For example, it is used in CNOT circuit synthesis (Section 2.2),
connectivity-aware CNOT circuit synthesis (Section 2.3), and noise-aware CNOT circuit routing (Section 4).

2.2 CNOT Circuit Synthesis

CNOT circuit synthesis takes a parity matrix as input and returns a CNOT circuit performing the desired oper-
ation [2, 52, 65]. It allows the coupling of any pair of qubits and aims to reduce the synthesized gate count. In
what follows, we show that every CNOT circuit can be uniquely represented by a non-singular binary square
matrix, namely, the parity matrix.

The parity matrix representation of a CNOT circuit Consider computational basis states |c⟩ and |t⟩, c, t ∈
Z2. Let ⊕ denote the bitwise XOR operation. |c⟩ and |t⟩ are called the control and target qubit states. When
|c⟩= |0⟩, CNOT acts trivially on |t⟩. Otherwise, CNOT acts as a NOT gate and flips |t⟩. For convenience, the
operation in Equation (2) is denoted as CNOT(c, t).

CNOT|c⟩|t⟩= |c⟩|c⊕ t⟩. (2)

Definition 2.2. Let A be a binary square matrix. In the matrices below, we use ′ to distinguish between the
indices for rows and columns. This convention will become useful in the CNOT circuit synthesis. When denoting
a column operation C(i′, j′) or column j′, we drop ′ for brevity.

• R(c, t) ·A denotes a row operation on A, where row c is added to row t modulo 2 and row c remains
unchanged. Let JR(c, t)K be the matrix representation of R(c, t). Its diagonal components are equal to 1.
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Its off-diagonal components are equal to 0, except for the entry on row t and column c.

R(c, t) ·A = JR(c, t)KA, JR(c, t)K =

· · · c′ · · · t ′ · · ·



...
...

...
c · · · 1 · · · 0 · · ·
...

...
...

t · · · 1 · · · 1 · · ·
...

...
...

.

• A ·C(c, t) denotes a column operation on A, where column c is added to column t modulo 2 and column
c remains unchanged. Let JC(c, t)K be the matrix representation of C(c, t). Its diagonal components are
equal to 1. Its off-diagonal components are equal to 0, except for the entry on row c and column t.

A ·C(c, t) = AJC(c, t)K, JC(c, t)K =

· · · c′ · · · t ′ · · ·



...
...

...
c · · · 1 · · · 1 · · ·
...

...
...

t · · · 0 · · · 1 · · ·
...

...
...

.

Definition 2.3. A CNOT circuit over n qubits can be uniquely represented by an n× n binary square matrix,
namely, the parity matrix. Let 0 ≤ i, j ≤ n− 1. The i-th row represents the i-the input qubit. The j-th column
represents the parity term on the j-th output qubit [2, 65, 52].

Example 2.1. The parity matrix of an n-qubit empty circuit is an n×n identity matrix I.

Example 2.2. Figure 1a is a circuit consisting of one CNOT gate, CNOT(c, t). Figure 1b shows its parity
matrix representation. CNOT(c, t) corresponds to performing a column operation C(c, t) on I, or performing a
row operation R(t, c) on I.

A = IJC(c, t)K = JR(t,c)KI.

|c⟩

|t⟩

...

...

...

⊕
• |c⟩

|c⊕ t⟩

...

...

...

C =

(a) C is an n-qubit CNOT circuit with one CNOT gate.

A =

· · · c′ · · · t ′ · · ·



...
...

...
c · · · 1 · · · 1 · · ·
...

...
...

t · · · 0 · · · 1 · · ·
...

...
...

(b) A is the parity matrix of C.

Figure 1: The action of a CNOT gate corresponds to a column (row) operation on I. This allows us to derive the parity
matrix of a CNOT circuit.

Derive the parity matrix of a CNOT circuit To see the correspondence between a CNOT circuit and its
parity matrix, consider a 4-qubit CNOT circuit in Figure 2a. Denote the initial state on each qubit wire by |0⟩,
|1⟩, |2⟩, and |3⟩. On the righthand side of C, the output parity terms are |0⊕2⟩, |0⊕3⟩, |0⊕1⟩, and |1⊕2⊕3⟩.
They are expressed by 4-dimensional binary vectors b0, b1, b2, and b3, where row i denotes the participation
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of input qubit i in the parity term. More precisely, bi j = 1 indicates that input qubit i participates in the parity
term j. bi j = 0 indicates otherwise. In Figure 2b, column j in A corresponds to b j.

b0 =


1
0
1
0

 , b1 =


1
0
0
1

 , b2 =


1
1
0
0

 , b3 =


0
1
1
1

 .
We can also express the entanglement in C as a bipartite graph. In Figures 2c and 2d, the inputs on wires 0,

1, 2, and 3 are entangled in the parity terms 0⊕2, 0⊕3, 0⊕1, and 1⊕2⊕3 on output wires 0′, 1′, 2′, and 3′

respectively. We use ′ to denote an output wire of a quantum circuit. In the purple dashed box, Win = {0,1,2,3}
denotes the input qubits. In the pink dashed box, Wout = {0′,1′,2′,3′} denotes the output qubits. Win and Wout

are two disjoint independent sets. The connectivity between them denotes the information propagation in C. It
is represented by the biadjacency matrix A, which is the parity matrix of C.

|0⟩ • • |0⊕2⟩
|1⟩ • • |0⊕3⟩

C = |2⟩ • • |0⊕1⟩
|3⟩ • |1⊕2⊕3⟩

(a) C is a 4-qubit CNOT circuit.

A =

0′ 1′ 2′ 3′


0 1 1 1 0
1 0 0 1 1
2 1 0 0 1
3 0 1 0 1

(b) A is the parity matrix of C.

0 0′ = 0⊕2

1 1′ = 0⊕3

2 2′ = 0⊕1

3 3′ = 1⊕2⊕3

(c) In the bipartite graph, edges with the same colour compose a
parity term. Each colouring corresponds to a column in A (e.g.,
edges in light blue correspond to the first column and edges in light
green correspond to the second column).

0 0′ = 0⊕2

1 1′ = 0⊕3

2 2′ = 0⊕1

3 3′ = 1⊕2⊕3

(d) In the bipartite graph, edges with the same colour denote the
participation of an input qubit in all parity terms. Each colouring
corresponds to a row in A (e.g., edges in dark blue correspond to
the first row and edges in dark green correspond to the second row).

Figure 2: A 4-qubit CNOT circuit C is uniquely represented by a 4× 4 parity matrix A. Row i denotes the state on the
input qubit wire i. Column j is the parity term b j on the output qubit wire j′. The bipartite graph interpretation of C
shows the information propagation in the CNOT circuit. Different ways of colouring edges help us interpret a row and
column in A.

Definition 2.4. Let C be an n-qubit CNOT circuit with parity matrix A. Right-concatenate C with a sequence
of t CNOT gates, t ∈ N ̸=0. Let the resulting circuit be Csyn. Without parallelizing CNOT gates, for ik, jk ∈ Zn,
k ∈ Zt ,

Csyn = C◦CNOT( j0, i0)◦CNOT( j1, i1)◦ . . .◦CNOT( jt−1, it−1).

In the circuit diagram, it is visualized as follows.

CCNOT( j0, i0)CNOT( j1, i1)
...

...
...CNOT( jt−1, it−1)

...
...

...

. . .

. . .
Csyn =

Let Asyn be the parity matrix of Csyn. Asyn = R(it−1, jt−1) · . . . ·R(i1, j1) ·R(i0, j0) ·A.
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Exactly synthesize a CNOT circuit Next, we establish a one-to-one correspondence between a CNOT circuit
and its parity matrix. Lemma 2.1 shows that every parity matrix has full rank. Based on this linear algebraic
property, Lemma 2.2 proposes a way to exactly synthesize a CNOT circuit.

Lemma 2.1. The parity matrix of an n-qubit CNOT circuit is an n×n binary matrix of full rank.

Proof. By Definition 2.4, an n-qubit CNOT circuit corresponds to applying a sequence of row operations to
I. Let the resulting matrix be A. Since a square matrix is non-singular if and only if it is row-equivalent to an
identity matrix, A is a binary square matrix of full rank. By Definitions 2.2 and 2.3, A is the parity matrix of C.
Hence, the parity matrix of a CNOT circuit is a binary square matrix of full rank.

Let A be the parity matrix of an n-qubit CNOT circuit C. By Lemma 2.1, A is a binary square matrix
of full-rank. We can apply Gaussian elimination to find a sequence of row operations that sends A to the
identity matrix I. Since each row operation corresponds to a CNOT gate, we can obtain a CNOT circuit Csyn

by concatenating the corresponding CNOT operations designated by the Gaussian elimination. This process is
called CNOT circuit synthesis. Csyn is the synthesized CNOT circuit of A.

Lemma 2.2. For t ∈ N̸=0, ik, jk ∈ Zn, k ∈ Zt , let R(i0, j0), R(i1, j1), . . . , R(it−1, jt−1) be a sequence of row
operation on A such that

R(it−1, jt−1) · . . . ·R(i1, j1) ·R(i0, j0) ·A = I. (3)

Then Csyn = CNOT( jt−1, it−1)◦ . . .◦CNOT( j1, i1)◦CNOT( j0, i0) is a circuit representation of A, so C and Csyn

have the same semantics.

Proof. By Definition 2.4, Equation (3) is expressed as

C◦
(
CNOT( j0, i0)◦CNOT( j1, i1)◦ . . .◦CNOT( jt−1, it−1)

)
= I. (4)

Right-multiplying Equation (4) by
(
CNOT( j0, i0)◦CNOT( j1, i1)◦ . . .◦CNOT( jt−1, it−1)

)−1 yields

C =
(
CNOT( j0, i0)◦CNOT( j1, i1)◦ . . .◦CNOT( jt−1, it−1)

)−1

= CNOT( jt−1, it−1)◦ . . .◦CNOT( j1, i1)◦CNOT( j0, i0) =: Csyn.

In the circuit diagram, Csyn is visualized as follows.

CNOT( jt−1, it−1)CNOT( j1, i1)
...CNOT( j0, i0)

...
...

. . .

. . .
Csyn =

...
...

Derive the parity matrix of a SWAP circuit A permutation matrix is a binary square matrix equivalent to
an identity matrix up to row and column permutation. An n×n permutation matrix P represents a permutation
of n elements. Let M be an n×n matrix. PM permutes the rows of M, while MP permutes the columns of M.

A SWAP circuit is a circuit over SWAP gates. It can be obtained by relabelling the qubit wires. Since
a SWAP gate is equal to three CNOT gates, a SWAP circuit is a CNOT circuit whose parity matrix coincides
with a permutation matrix. In Figure 3, we use a 4-qubit SWAP circuit CSWAP to show that its parity matrix is
exactly the permutation matrix for CSWAP.
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0 0′

1 1′

2 2′

3 3′

CSWAP =

(a) Circuit CSWAP is composed of a sequence of SWAP gates. As a result, the inputs on
wires 0, 1, 2, and 3 are mapped to output wires 2′, 0′, 3′, and 1′ respectively. Equiva-
lently, we can think of CSWAP as a bipartite graph, with an input part Win = {0,1,2,3}
and an output part Wout = {0′,1′,2′,3′}. Win and Wout are two disjoint independent sets.
The connectivity between them shows the information propagation within CSWAP.

A =

0′ 1′ 2′ 3′


0 0 0 1 0
1 1 0 0 0
2 0 0 0 1
3 0 1 0 0

(b) A is the parity matrix of CSWAP. It
is the biadjacency matrix that describes
the connectivity between Win and Wout
in the bipartite graph. It is known as a
permutation matrix.

Figure 3: The parity matrix of an n-qubit SWAP circuit is an n×n permutation matrix.

Synthesize a CNOT circuit up to permutation Lastly, we generalize Lemma 2.2 to CNOT circuit synthesis
up to permutation. This establishes the soundness of algorithm PermRowCol [26], based on which we develop
the noise-aware CNOT routing algorithm NAPermRowCol in Section 4.
Lemma 2.3. Let A be the parity matrix of an n-qubit CNOT circuit C. For t ∈ N ̸=0 and it−1, jt−1 ∈ Zn, let
R(i0, j0), R(i1, j1), . . . , R(it−1, jt−1) be a sequence of row operation on A such that

R(it−1, jt−1) · . . . ·R(i1, j1) ·R(i0, j0) ·A = P, (5)

P is the permutation matrix of a SWAP circuit CSWAP. Then

Cfully syn = CSWAP ◦Csyn, Csyn = CNOT( jt−1, it−1)◦ . . .◦CNOT( j1, i1)◦CNOT( j0, i0).

Cfully syn is a circuit representation of A, so C and Cfully syn have the same semantics. In other words, Csyn is
the synthesized CNOT circuit of A up to permutation.

Proof. By Definition 2.4, Equation (5) is expressed as

C◦
(
CNOT( j0, i0)◦CNOT( j1, i1)◦ . . .◦CNOT( jt−1, it−1)

)
= CSWAP. (6)

Right-multiplying Equation (6) by
(
CNOT( j0, i0)◦CNOT( j1, i1)◦ . . .◦CNOT( jt−1, it−1)

)−1 yields

C = CSWAP ◦
(
CNOT( j0, i0)◦CNOT( j1, i1)◦ . . .◦CNOT( jt−1, it−1)

)−1

= CSWAP ◦CNOT( jt−1, it−1)◦ . . .◦CNOT( j1, i1)◦CNOT( j0, i0)

= CSWAP ◦Csyn =: Cfully syn.

In the circuit diagram, Cfully syn is visualized as follows.

CNOT( jt−1, it−1)CNOT( j1, i1)
...CNOT( j0, i0)

...
...

. . .

. . .
Cfully syn =

...
... CSWAP

...

2.3 Connectivity-Aware CNOT Circuit Synthesis

Consider a NISQ hardware with at least n physical qubits. Connectivity-aware CNOT synthesis accounts
for the hardware topology and synthesizes an n-qubit CNOT circuit based on an n× n parity matrix. In the
meantime, it reduces the synthesized gate count. In Section 2.3.1, we introduce the Steiner tree, which is used
to encode the connectivity constraint and efficiently synthesize a CNOT circuit. In Section 2.3.2, we reduce
the connectivity-aware CNOT circuit synthesis to a Steiner tree problem. As a concrete example, we explain
how algorithm PermRowCol [26] accounts for the connectivity constraint and synthesizes a CNOT circuit up
to permutation.
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2.3.1 Steiner Tree

Definition 2.5. A graph G is defined by an ordered pair (VG,EG). VG is a set of vertices and EG is a set of
edges. Each edge is defined as e = (u,v), where u,v ∈ VG. The degree of a vertex is the number of edges that
are incident to this vertex.

Definition 2.6. Let G = (VG,EG) be a graph.

• G is edge-weighted if it has a weight function ωG : EG→ R.

• G is undirected if none of its edges have orientations. For all u,v ∈VG, (u,v) = (v,u).

• G is connected if every vertex in the graph is reachable from any other vertex by traversing a sequence
of edges (i.e., a path). A disconnected graph is a graph that is not connected.

• v ∈VG is a cut vertex if its removal disconnects G. It is a non-cut vertex if otherwise.

• G is acyclic if it has no cycle.

• G has a self-loop if (u,u) ∈ EG for some u ∈VG.

• G is a tree if it is undirected, connected, and acyclic.

In this paper, we consider only the undirected edge-weighted connected graph and use G = (VG,EG,ωG) to
denote such graphs.

Definition 2.7. A graph is simple if it is undirected with all edge weights equal to 1; it has at most one edge
between two distinct vertices with no self-loops.

Definition 2.8. A simple graph is complete if every pair of distinct vertices is connected by a unique edge.
Otherwise, the graph is incomplete.

Definition 2.9. Let G = (VG,EG,ωG).

• H = (VH ,EH ,ωH) is a subgraph of G, denoted as H ⊆ G, if VH ⊆VG, EH ⊆ EG, and ωH(e) = ωG(e) for
all e ∈ EH .

• T = (VT ,ET ,ωT ) is a minimum spanning tree of G if T ⊆ G, VT =VG, with ∑e∈ET ωT (e) minimal.

Definition 2.10. Let G = (VG,EG,ωG), S ⊆ VG. A Steiner tree T = (VT ,ET ,ωT ) is a subgraph of G such that
S⊆VT with ∑e∈ET ωT (e) minimal. S is called the terminal, the vertices in S are called the terminal nodes, and
those in VT \ S are called the Steiner nodes. A solution to the Steiner tree problem Steiner(G, S) is a Steiner
tree T of G with S as its leaves.

A Steiner tree is a variation of a minimum-spanning tree. A Steiner tree problem involves finding a
minimum-weight tree that spans a given set of vertices (i.e., the terminal nodes). Solutions to Steiner(G, S) are
not unique. Consider an example in Figure 4, where G is a 12-vertex grid, S = {2,3,7,11}, and ωG :Z12→{1}.
In Figure 4a, terminal nodes are coloured in red. Figures 4b and 4c show two distinct solutions to Steiner(G,S).
The edges of the Steiner trees T0 and T1 are highlighted in green. The sets of Steiner nodes VT0 \ S and VT1 \ S
can be read off from each graph.

0 1 2

3 4 5

6 7 8

9 10 11

(a) S = {2,3,7,11}.

0 1 2

3 4 5

6 7 8

9 10 11

(b) VT0 \S = {1,4,10}.

0 1 2

3 4 5

6 7 8

9 10 11

(c) VT1 \S = {4,5,8}.

Figure 4: Solutions to a Steiner tree problem Steiner(G,S) are not unique. (a) G is a 12-vertex grid with S = {2,3,7,11}.
The terminal nodes are coloured in red. (b) T0 is a solution to Steiner(G,S). The edges of the Steiner tree T0 are coloured
in green. Its Steiner nodes are the intermediary nodes in the Steiner tree, VT0 \ S = {1,4,10}. (c) T1 is an alternative
solution to Steiner(G, S). Its set of Steiner nodes is VT1 \S = {4,5,8}.
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Computing Steiner trees is NP-hard and the related decision problem is NP-complete [37]. There are
different heuristic algorithms to compute approximate Steiner trees [14, 34, 59]. The choice of heuristics
depends on their use case, as well as the trade-off between the problem’s size and the algorithm’s runtime.

2.3.2 Reduction to Steiner Tree Problem: PermRowCol

In superconducting quantum computers, qubits are arranged in a 2D grid. Each qubit can only interact with
its nearest neighbours [1, 7, 23]. This is called the NN interaction and is modelled by a connectivity graph,
G = (VG,EG,ωG), ωG : EG → R. Each vertex corresponds to a physical qubit, and each edge represents an
entangling gate that can be performed on the qubits corresponding to its endpoints. Connectivity-aware CNOT
circuit synthesis maps a logical CNOT circuit to NISQ hardware by accounting for its underlying topology, but
assuming no noise in the system. That is, G is simple, ωG : EG→{1}.

Let C be a logical CNOT circuit and A be its parity matrix. The synthesized circuit Csyn contains only
CNOT gates acting on adjacent physical qubits in the NISQ hardware. Moreover, its CNOT count should
be as few as possible. In [25, 26, 39, 48, 71], this problem is reduced to a Steiner tree problem. Here, we
use the algorithm PermRowCol [26] to demonstrate the problem reduction. In Section 4, it is generalized to
NAPermRowCol to account for noise in the system. In both cases, we assume an arbitrary initial qubit mapping,
and it is illustrated below.

An arbitrary initial qubit mapping Let n be the number of logical qubits in C and m= |VG|, n≤m. Consider
an initial qubit map where logical qubit i is mapped to quantum register j. Formally, this is defined by an
injective function, Φ : Zn→ Zm. Φ(Zn) corresponds to a connected subregion in the NISQ hardware. In what
follows, we use vertices, physical qubits, and quantum registers interchangeably.

To illustrate the basics of PermRowCol, we use the 4-qubit CNOT circuit in Figure 6a with a linear topology
in Figure 5b as an example. According to Figure 5a, the logical qubit i is mapped to the quantum register j by
Φ, Φ : Z4→ Z4. This means we need to measure quantum register Φ(i) to return the state of logical qubit i.
For clarity, we use a green label to denote a logical qubit and a blue label to denote a physical qubit.

Logical qubit i 0 1 2 3
Quantum register j 3 0 1 2

(a) Due to the initial qubit map, each logical qubit (in green) is
mapped to a vertex (in blue).

(b) G is the linear graph. Each edge has a unit weight, which is
omitted here. {0,3} is the set of non-cut vertices.

Figure 5: Visualize the initial qubit map on a hardware topology.

Remark 2.2. The x-indexed row (a.k.a., row x) is a row whose index is x. It is not necessarily the x-th row in
the matrix. For example, in Figure 6c, the 3-index row of A0 is the first row of A0. This convention also applies
to the indexing of columns. On the physical layer, CNOT(i, j) denotes a CNOT gate acting on physical qubits
labelled by i and j. Correspondingly, R(j, i) on A0 denotes a row operation of adding the j-indexed row to the
i-indexed row, while keeping the j-indexed row unchanged.

Figure 6b demonstrates the consequence of mapping each input qubit of C to a quantum register in Fig-
ure 5b. For brevity, we drop the ket notations in every circuit diagram and use ′ to distinguish output wires from
input wires.

Definition 2.11. Given a hardware topology G, CNOT(i, j) (or R(j, i) on A0) is allowed if quantum registers i
and j are connected. It is not allowed if otherwise.

In Figure 6b, some of the CNOT operations (annotated by ×) are not allowed because they do not act on
adjacent physical qubits. For example, CNOT(3, 0) is not allowed because vertices 3 and 0 are not adjacent
in Figure 5b. In light of this, we synthesize this circuit using PermRowCol, after which A0 is reduced to the
permutation matrix P,
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P =

3′ 0′ 1′ 2′


3 0 1 0 0
0 0 0 1 0
1 0 0 0 1
2 1 0 0 0

.

⊕• ⊕
• ⊕

•

⊕
•

⊕

• ⊕•
⊕

•

0

1

2

3

The logical circuit C

0′ = 0⊕2

1′ = 0⊕3

2′ = 0⊕1

3′ = 1⊕2⊕3

(a) The logical circuit C is composed of a sequence of CNOT gates. The label of each wire is coloured green to indicate that it is a
logical qubit. We use ′ to distinguish output wires from input wires.

⊕• ⊕
• ⊕

•

⊕
•

⊕

• ⊕•
⊕

•

3 = Φ(0)

0 = Φ(1)

1 = Φ(2)

2 = Φ(3)

C after the initial qubit mapping

3′ = Φ(0)⊕Φ(2) = 3⊕1

0′ = Φ(0)⊕Φ(3) = 3⊕2

1′ = Φ(0)⊕Φ(1) = 3⊕0

2′ = Φ(1)⊕Φ(2)⊕Φ(3) = 0⊕1⊕2

× × × ×

(b) After applying the initial qubit map Φ, the inputs of C are mapped to each quantum register in Figure 5b. On the physical layer, the
labels of each wire are coloured blue. We use ′ to distinguish output wires from input wires. Based on the linear topology, some of the
CNOT operations are not allowed (annotated by ×) because they do not act on adjacent qubits.

A =

0′ 1′ 2′ 3′


0 1 1 1 0
1 0 0 1 1
2 1 0 0 1
3 0 1 0 1

Φ−−→ A0 =

3′ 0′ 1′ 2′


3 1 1 1 0
0 0 0 1 1
1 1 0 0 1
2 0 1 0 1

(c) A and A0 are the parity matrices of C before and after the initial qubit mapping.

Figure 6: Φ maps the inputs of logical CNOT circuit C to quantum registers in NISQ hardware. Accordingly, C’s parity
matrix A is updated to A0. Connectivity-aware CNOT circuit synthesis is carried out on A0 with the hardware topology
G in Figure 5b.

PermRowCol reduces a parity matrix to a permutation matrix In Section 2.2, Gaussian elimination re-
duces a parity matrix to an identity matrix. PermRowCol, however, reduces it to a permutation matrix. This
means at each reduction step, we have more freedom to choose a pivot row and column. Here, we use the
example in Figure 6 to provide detailed explanations of PermRowCol. Figure 7 demonstrates the synthesized
circuit Csyn up to permutation of quantum registers.

In Csyn, every CNOT operation is allowed. To recover the initial qubit mapping, Csyn is concatenated with
a circuit over SWAP gates, CSWAP, whose parity matrix is P. In the end, the fully synthesized circuit for C is
expressed as CSWAP ◦Csyn. We can read off an evolved state from a quantum register that is annotated on the
right. For example, the evolved state 0⊕2 of the input wire 0 can be obtained by measuring quantum register
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3 (denotes as 3′′). Without CSWAP, we can obtain this parity term by measuring quantum register 2 (denotes as
2′). This is equivalent to relabeling quantum registers according to P.

In a nutshell, PermRowCol reduces the CNOT count of a synthesized circuit by factoring out SWAP gates
after synthesizing a parity matrix. It offloads the task of quantum computing onto classical processing and
reduces the computation resources in NISQ compilation. As a result, Csyn contains fewer CNOT gates than the
fully synthesized circuit CSWAP ◦Csyn.

3 3′ = 2⊕3

0 0′ = 0⊕3

1 1′ = 0⊕1⊕2

2 2′ = 1⊕3

⊕

• ⊕• ⊕

•

⊕
• ⊕

•

⊕
• ⊕

•

The synthesized circuit Csyn

⊕
• ⊕•

3′′ = 1⊕3 = Φ(2)⊕Φ(0)

0′′ = 2⊕3 = Φ(3)⊕Φ(0)

1′′ = 0⊕3 = Φ(1)⊕Φ(0)

2′′ = 0⊕1⊕2 = Φ(1)⊕Φ(2)⊕Φ(3)

CSWAP

Figure 7: The fully synthesized circuit of C is expressed as CSWAP ◦Csyn. The label of each wire is coloured blue (green)
to indicate that it is a quantum register (logical qubit). ′ and ′′ are used to distinguish output wires from input wires. For
example, after Csyn, quantum register 2 carries a parity term, 2′ = 1⊕ 3. After CSWAP, this parity term is mapped to
quantum register 3 , 3′′ = 1⊕ 3. Equivalently, CSWAP relabels quantum register 2 to 3. This means after CSWAP ◦Csyn,
we can measure quantum register 3 to obtain 1⊕ 3 = Φ(2)⊕Φ(0). In other words, the synthesized circuit successfully
recovers the parity term in the output wire 0 of C, up to permuting quantum registers.

The technicality of PermRowCol A0 is reduced to P through a sequence of reduction steps. Before each
reduction, a pivot row and column (denoted as r and c) are selected based on the binary structure of A0 and the
connectivity of G. In A0, suppose that row r corresponds to the i-th row and column c corresponds to the j-th
column, i, j ∈ Zn. That is, Φ(i) = r and Φ( j) = c. For t ∈ Zn, let et be the basis vector (i.e., the t-th column
of I). A reduction step involves two actions by applying a sequence of row operations: a column reduction
which transforms column c to ei and a row reduction which transforms row r to e⊤j . After a reduction step, the
reduced row r and column c are removed from A0. Accordingly, vertex Φ(i) is removed from G. The algorithm
terminates when there is one vertex left in G.

Procedure 2.1. To select a pivot row, proceed as follows.

1. Among all rows in A0, find the set of rows whose indices correspond to the non-cut vertices in G. Let it
be R0.

2. Among all rows in R0, find the set of rows with the minimum Hamming weight. Let it be R1.

3. Return an arbitrary row in R1. Let its index be r.

Procedure 2.2. Given the pivot row r, to select a pivot column, proceed as follows.

1. Among all columns in A0, find the set of columns with a non-zero entry at row r. Let it be C0.

2. Among all columns in C0, find the set of columns with the minimum Hamming weight. Let it be C1.

3. Return an arbitrary column in C1. Let its index be c.

Column reduction Given a pivot column c, let S0 be the set of its rows with a parity of 1. In the trivial case,
column c has a hamming weight of 1 and S0 = {r}. This means it is already the basis vector ei. Otherwise,
conduct Procedure 2.3 to perform column reduction.

Procedure 2.3. Let r ∈ S0 and |S0|> 1. Build a Steiner tree T0 of G where r is the root and S0 is the terminal.
Carry out two traversals in T0, each of which returns a sequence of row operations.

1. Traverse T0 from the leaves to the root. For each Steiner node v, add its child c to it. This corresponds to
performing R(c, v) on A0.
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2. Traverse T0 from the leaves to the root and add every parent p to its child c. This corresponds to per-
forming R(p, c) on A0.

Before the first traversal, the leaves of T0 correspond to the rows (excluding row r) in column c that have a
parity of 1, while the Steiner nodes correspond to the rows that have a parity of 0. After the first traversal, all
Steiner nodes will carry a parity of 1. After the second traversal, the parity 1 from the root (i.e. row r) will be
propagated to every other node in T0. As a result, every row in column c will have a parity of 0 except for row
r. Let ℓ0 be a word composed of all row operations output from the two traversals in T0. t ∈ N,

ℓ0 = R(i0, j0)R(i1, j1) . . .R(it−1, jt−1).

After column reduction, column c is reduced to ei and A0 is updated as

A0← R(it−1, jt−1) . . . ·R(i1, j1) ·R(i0, j0) ·A0.

Row reduction In the trivial case, the pivot row r has a hamming weight of 1 and S1 = {r}. This means it
is already the basis vector e⊤j . Otherwise, to reduce row r, we start by solving a system of linear equations:
finding rows rk in A0 such that

⊕
rk = e⊤j ⊕ r. Let S1 be the set of these indices k including r.

Procedure 2.4. Build a Steiner tree T1 where r is the root and S1 is the terminal. Carry out two traversals in
T1, each of which returns a sequence of row operations.

1. Traverse T1 from the root to the leaves and add every Steiner node v to its parent p. This corresponds to
performing R(v, p) on A0.

2. Traverse T1 from the leaves to the root and add every child c to its parent p. This corresponds to per-
forming R(c, p) on A0.

Summing the parities of all rows in S1 implies that all columns in row r carry a 0 except for column c.

⊕
k∈S1

rk = e⊤j . (7)

After the second traversal, the parity on each terminal node is propagated to the root and added together.
Since the Steiner nodes are added twice modulo 2 throughout the two traversals, they do not participate in the
parity sum of Equation (7). Let ℓ1 be a word composed of all row operations output from the two traversals in
T1. t ′ ∈ N,

ℓ1 = R(i0′ , j0′)R(i1′ , j1′) . . .R(it ′−1, jt ′−1).

After row reduction, row r is reduced to e⊤j and A0 is updated as

A0← R(it ′−1, jt ′−1) . . . ·R(i1′ , j1′) ·R(i0′ , j0′) ·A0.

Update the parity matrix and the connectivity graph after a reduction step After a column reduction, the
participation of all input registers except for quantum register r is removed from the output register c. After
a row reduction, the participation of input register r is removed from all output registers except for the output
register c. As a result, the input register r and output register c are no longer coupled with any other registers.
This is illustrated in Figures 10 to 12.

In the meantime, a parity term is eliminated to a single parity. Leveraging the reversibility of quantum gates
and the relabelling of quantum registers, we can recover the evolved logical state in the designated quantum
register. After that, row r and column c are removed from A0, and vertex r is removed from G. This means at
each reduction step, our instance size is getting smaller. When PermRowCol terminates, we can recover the
permutation matrix P by assembling the reduced row and column from each reduction step.
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Demonstrate a reduction step To illustrate PermRowCol’s technicality, we use it to synthesize the logical
circuit in Figure 6a according to the hardware topology in Figure 5b. Since this is carried out on the physical
layer, there is no ambiguity and we will no longer use coloured labels in the descriptions below.

Figure 8 demonstrates the column reduction in the first reduction step, where column 1 is eliminated. In
Figure 8b, Steiner tree T0 is constructed based on the pivot column, with vertex 0 as the root and vertex 3 as
the leave. To reduce column 1, we carry out two traversals. The first bottom-up traversal returns two row
operations R(3,2) and R(2,1). The second bottom-up traversal returns three row operations R(2,3), R(1,2), and
R(0,1). Hence ℓ0 = R(3,2)R(2,1)R(2,3)R(1,2)R(0,1). In Figure 8c, they are performed on A0 and we get the
evolved parity matrix A0

0 after the column reduction.

A0 =

3′ 0′ 1′ 2′ Candidate rows


3 1 1 1 0 3
0 0 0 1 1 2
1 1 0 0 1
2 0 1 0 1

Candidate columns 2 3

(a) For the first reduction step, the pivot row and column are highlighted in red.

(b) Steiner tree T0 is constructed for the column reduction. Vertex 0 is the root and vertex 3 is the leaf. S = {0,3}. Two traversals of T0
return a sequence of row operations, (i) ∼ (v).

A0
(i)−−−→

R(3,2)

3′ 0′ 1′ 2′


3 1 1 1 0
0 0 0 1 1
1 1 0 0 1
2 1 0 1 1

(ii)−−−→
R(2,1)

3′ 0′ 1′ 2′


3 1 1 1 0
0 0 0 1 1
1 0 0 1 0
2 1 0 1 1

(iii)−−−→
R(2,3)

3′ 0′ 1′ 2′


3 0 1 0 1
0 0 0 1 1
1 0 0 1 0
2 1 0 1 1

(iv)−−−→
R(1,2)

3′ 0′ 1′ 2′


3 0 1 0 1
0 0 0 1 1
1 0 0 1 0
2 1 0 0 1

(v)−−−→
R(0,1)

3′ 0′ 1′ 2′


3 0 1 0 1
0 0 0 1 1
1 0 0 0 1
2 1 0 0 1

= A0
0.

(c) After traversing T0, perform a sequence of row operations on A0. Column 1 is reduced to e1 and A0
0 is the evolved parity matrix.

Figure 8: Illustrate the column reduction in the first reduction step.

After that, Figure 9 demonstrates the row reduction in the first reduction step, where row 0 is eliminated.
In Figure 9a, Steiner tree T1 is constructed based on the pivot row in A0

0, since r⊕ r1 = e⊤2 . The tree traversals
only return a row operation R(1,0). Hence ℓ1 = R(1,0). In Figure 9b, it is performed on A0

0 and we get the
evolved parity matrix A1

0 after the row reduction.
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(a) Steiner tree T1 is constructed for the row reduction. Vertex 0 is the root and vertex 1 is the leaf. S = {0,1}. Two traversals of T1
return one row operation, (vi).

A0
0

(vi)−−−→
R(1,0)

3′ 0′ 1′ 2′


3 0 1 0 1
0 0 0 1 0
1 0 0 0 1
2 1 0 0 1

= A1
0.

(b) After traversing T1, perform a row operation on A0
0. Row 0 is reduced to e⊤2 and A1

0 is the evolved parity matrix.

Figure 9: Illustrate the row reduction in the first reduction step.

Figure 10 articulates the intuition for a column and row reduction using the bipartite graph introduced in
Section 2.2. Since the input register 0 and output register 1 are no longer coupled with any register, row 0 and
column 1 are removed from A1

0. The parity matrix A0 is updated in Figure 11a. In the meantime, vertex 0 is
removed from G and the connectivity graph is updated in Figure 11b. Figures 11 and 12 demonstrate details of
the remaining reduction steps.

3 3′ = 2

0 0′ = 3

1 1′ = 0

2 2′ = 0⊕1⊕2⊕3
⊕

•⊕
• ⊕
• ⊕•

⊕

•

1

0⊕1

1⊕2

1⊕3

=

3

0

1

2

3′ = 2

0′ = 3

1′ = 0

2′ = 0⊕1⊕2⊕3

(a) In the column reduction, a sequence of row operations are performed on A0. They correspond to left-applying a sequence of CNOT
gates to circuit C after the initial qubit mapping, whose information propagation is illustrated by the bipartite graph (LHS). The pivot
row corresponds to the input register 0. The pivot column corresponds to the output register 1. Relevant qubit wires are highlighted in
red. After the column reduction, the updated coupling of circuit C0

0 (RHS) is described by A0
0. Except for quantum register 0 (the red

solid wire), the column reduction removes all other input registers (the red dashed wire) from output register 1.

3

0

1

2

⊕•
3

0

0⊕1

2

=

3

0

1

2

3′ = 2

0′ = 3

1′ = 0

2′ = 1⊕2⊕3

3′ = 2

0′ = 3

1′ = 0

2′ = 1⊕2⊕3

(b) In the row reduction, a row operation R(1,0) is performed on A0
0. It corresponds to left-applying CNOT(0,1) to circuit C0

0, whose
information propagation is illustrated by the bipartite graph (LHS). After the row reduction, the updated parity matrix A1

0 corresponds
to the updated circuit C1

0, whose information propagation is illustrated by the bipartite graph (RHS). The row reduction removes input
register 0 from all other output registers (the red dashed wire), except output register 1(the red solid line).

Figure 10: The intuition behind the first reduction step.

Lastly, we comment on the heuristic algorithm that we choose to create a Steiner tree with a terminal
S for a simple connected graph. This is equivalent to constructing a minimum spanning tree over S using
Dijkstra’s Shortest Path algorithm [33]. For each terminal node, its shortest path to the root is used to construct
the minimum spanning tree. After that, the calculation of total edge weight considers the paths between the
constructed tree and the terminals that have not yet been added to the spanning tree.
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A0 =

3′ 0′ 2′ Candidate rows( )3 0 1 1 2
1 0 0 1 1
2 1 0 1

Candidate columns 3
(a) For the second reduction step, the pivot row and column are highlighted in red.

(b) G is the updated connectivity graph
after removing vertex 0.

(c) Steiner tree T0 is constructed for the column reduction. Vertex 1 is the root and vertex 3 is the leaf. S = {1,3}. Two traversals of T0
return a sequence of row operations (annotated by (i) ∼ (ii)).

A0
(i)−−−→

R(2,3)

3′ 0′ 2′( )3 1 1 0
1 0 0 1
2 1 0 1

(ii)−−−→
R(1,2)

3′ 0′ 2′( )3 1 1 0
1 0 0 1
2 1 0 0

= A0
0 = A1

0.

(d) After traversing T0, perform a sequence of row operations on A0. Column 2 is reduced to e2 and A0
0 is the evolved parity matrix.

Since row 1 is also reduced to e⊤3 , A0
0 = A1

0 and Steiner tree T1 = /0. No more row reduction is needed.

3

1

2
⊕
• 3

1⊕2

2⊕3

=

3′ = 2⊕3

0′ = 3

2′ = 1

⊕
•

1

2

3 3′ = 2⊕3

0′ = 3

2′ = 1

(e) The intuition behind the second reduction step.

Figure 11: Illustrate the second reduction step.

A0 =

3′ 0′ Candidate rows( )
3 1 1 2
2 1 0 1

Candidate columns 2
(a) For the third reduction step, the pivot row and column are highlighted in red.

(b) G is the updated connectivity graph
after removing vertex 1.

(c) Steiner tree T0 is constructed for the column reduction. Vertex 2
is the root and vertex 3 is the leaf. S = {2,3}. The traversals of T0
return a row operation R(2,3).

A0
(i)−−−→

R(2,3)

3′ 0′( )
3 0 1
2 1 0

= A0
0 = A1

0.

(d) After the row operation, column 3 is reduced to e3 and A0
0 is the

evolved parity matrix. Since row 2 is also reduced to e⊤0 , A0
0 = A1

0
and Steiner tree T1 = /0. No more row reduction is needed.

3

2
⊕• 3

2⊕3
=3′ = 2

0′ = 3 2

3 3′ = 2

0′ = 3

(e) The intuition behind the third reduction step.

Figure 12: Illustrate the third reduction step.
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2.4 A Primer for Noise-Aware CNOT Circuit Routing

In NISQ architectures, it is inevitable to have several error sources during the execution of a quantum circuit.
Therefore, it is important to reduce their effects as much as possible. Noise-aware CNOT circuit routing
accounts for both the CNOT gate error rates and the constraint on the NN interactions. It takes a parity matrix
and an undirected edge-weighted connected graph as input. It outputs a synthesized circuit composed of allowed
CNOT operations, with improved reliability.

Let ρ denote the density matrix describing the initial state of a quantum system. Let n denote the number
of qubits in a quantum system, and t = 2n denote the dimension of its state space. In Section 2.4.1, we re-
view a noisy quantum channel and its superoperator representation. In Section 2.4.2, we introduce a metric
called the average gate fidelity. Compared to the CNOT count and the accumulated CNOT gate error rate, it
accurately quantifies the reliability of executing a CNOT circuit on NISQ hardware.

2.4.1 Quantum Channel in Superoperator Representation

Definition 2.12. A quantum channel E is a completely positive trace-preserving map between spaces of oper-
ators. Let {Mk} be a set of its Kraus operators, ∑k M†

k Mk = I. The action of E on ρ can be expressed in terms
of the Kraus decomposition,

E(ρ) = ∑
k

MkρM†
k .

We use a quantum channel to describe the evolution of a quantum state. It provides a convenient mathemat-
ical framework for us to characterize noise in a system. We start by representing a single-qubit noisy channel
E using the Kraus decomposition. Without loss of generality, consider a single-qubit Pauli channel [9].
Definition 2.13. Let B1 = {I,X ,Y,Z} be a 1-qubit Pauli basis. For n ∈ N ̸=0, let Bn be an n-qubit Pauli basis.

Bn =

{
n−1⊗
j=0

B j; B j ∈ B1

}
.

Definition 2.14. For n ∈ N ̸=0, let Pn be the n-qubit Pauli group. For j ∈ Zn, Pj denotes the single-qubit Pauli
operator acting on qubit j.

Pn =

{
n−1⊗
j=0

icPj; Pj ∈ B1, c ∈ Z4

}
.

Lemma 2.4. For any Q ∈ Pn \{icI; c ∈ Z4}, Tr[Q] = 0.

Proof. By Definition 2.14, Q =
⊗n−1

j=0 icPj, Pj ∈ B1, c ∈ Z4. Since Q /∈ {icI; c ∈ Z4}, there exists some k ∈ Zn

such that Pk ̸= I. Then, Tr[Pk] = 0 implies that

Tr(Q) = Tr

[
n−1⊗
j=0

icPj

]
= ic

n−1

∏
j=0

Tr[Pj] = 0.

Definition 2.15. For k ∈ Z4, Ek ∈ B1 with E0 = I, E1 = X , E2 = Y, E3 = Z. Pk is the probability distribution
of Ek. 0≤ Pk ≤ 1 and ∑Pk = 1. Mk is the Kraus operator such that

Mk =
√

PkEk,
3

∑
k=0

M†
k Mk = I.

A single-qubit Pauli channel E is defined as

E(ρ) =
3

∑
k=0

PkEkρE†
k . (8)
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Remark 2.3. When P1 = P2 = P3, E is called the depolarizing channel.

Definition 2.16. For n∈N ̸=0, k ∈Z4n , Ek ∈Bn. Pk is the probability distribution of Ek. 0≤ Pk ≤ 1 and ∑Pk = 1.
Mk is the Kraus operator such that

Mk =
√

PkEk,
4n−1

∑
k=0

M†
k Mk = I.

An n-qubit Pauli channel E is defined as

E(ρ) =
4n−1

∑
k=0

PkEkρE†
k . (9)

Definition 2.17. For m ∈ N̸=0, let A be an m×m matrix.

A = [ai, j] =


a0,0 a0,1 · · · a0,m−1
a1,0 a1,1 · · · a1,m−1

...
...

. . .
...

am−1,0 am−1,1 · · · am−1,m−1

 , i, j ∈ Zm.

ai, j denotes the matrix element on row i and column j. |A⟩⟩ is a column-vectorized matrix obtained from
stacking each column of A on top of one another.

|A⟩⟩ := (a0,0 a1,0 . . . am−1,0 a0,1 a1,1 . . . am−1,1 . . . a0,m−1 a1,m−1 . . . am−1,m−1)
⊤.

Vectorization converts an operator to a vector. It is linear in that for any two matrices A and B of the same
dimension,

|A+B⟩⟩= |A⟩⟩+ |B⟩⟩.

With the Kronecker product, matrix vectorization has a convenient property and we will use it to derive the
superoperator representation for an arbitrary linear operator.

Lemma 2.5 ([18]). Consider matrices A, B, and C with compatible dimensions for matrix multiplications,

|ABC⟩⟩= (C⊤⊗A)|B⟩⟩.

Definition 2.18. Let A be a quantum operation acting on a density matrix ρ . ρ is of dimension t× t, t ∈ N̸=0.
The superoperator representation SA is given alongside the column-vectorized density matrix |ρ⟩⟩ as

|A(ρ)⟩⟩= SA|ρ⟩⟩.

SA is of dimension t2× t2.

Lemma 2.6. LetA be a quantum operation acting on a density matrix ρ . WhenA is unitary, let A be its unitary
matrix representation. Then SA = A∗⊗A.

Proof. SinceA is unitary,A(ρ) = AρA†. By Lemma 2.5, |A(ρ)⟩⟩= |AρA†⟩⟩= ((A†)⊤⊗A)|ρ⟩⟩= A∗⊗A|ρ⟩⟩.
By Definition 2.18, SA = A∗⊗A.

Lemma 2.7. Let A be a quantum operation acting on a density matrix ρ . When A is not unitary, let {Mk} be
a set of its Kraus operators. Then SA = ∑k M∗k ⊗Mk.
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Proof. Since A is not unitary, A(ρ) = ∑k MkρM†
k , with ∑k M†

k Mk = I. By linearity and Lemma 2.5,

|A(ρ⟩⟩=
∣∣∑

k
MkρM†

k

〉〉
= ∑

k
|MkρM†

k ⟩⟩= ∑
k

M∗k ⊗Mk|ρ⟩⟩. (10)

By Definition 2.18, SA = ∑k M∗k ⊗Mk.

Corollary 2.1. For Ek, Pk, and Mk in Definition 2.16, let SEk = E∗k ⊗Ek. Then

SE =
4n−1

∑
k=0

PkSEk .

Proof. By Lemma 2.7 and definition 2.16,

SE =
4n−1

∑
k=0

M∗k ⊗Mk =
4n−1

∑
k=0

Pk(E∗k ⊗Ek).

Since Ek ∈ Bn is unitary, by Lemma 2.6, SEk = E∗k ⊗Ek. Therefore, SE = ∑
4n−1
k=0 PkSEk .

Lemma 2.8. For E j, Ek in Definition 2.16, t = 2n, and n ∈ N ̸=0, Tr[E jEk] = tδ jk.

Proof. When j = k, E jEk = E2
j = I. Since I is an identity matrix of dimension t × t, Tr[EiE j] = Tr[I] = t.

Otherwise, E jEk /∈ {icI; c ∈ Z4}. By Lemma 2.4, Tr[E jEk] = 0.

Lemma 2.9. For Ek in Definition 2.16, Ek ̸= I and t = 2n. Let E0 = I. Then Tr[SE0 ] = t2. For k > 0, Tr[SEk ] = 0.

Proof. By Definition 2.18, SE0 is an identity matrix of dimension t2× t2. By direct computation, Tr[SE0 ] =
Tr[I] = t2. For k > 0, since Ek ̸= I, by Lemmas 2.4 and 2.6, Tr[SEk ] = Tr[E∗k ⊗Ek] = Tr[Ek]

∗Tr[Ek] = 0.

Lemma 2.10. Let E0 and E1 be two quantum channels with respective sets of Kraus operators {Mk; 0 ≤ k <
n0, n0 ∈N ̸=0} and {Nℓ; 0≤ ℓ < n1, n1 ∈N ̸=0}. E0 and E1 have compatible dimensions. ∑M†

k Mk = ∑N†
ℓ Nℓ = I.

Then SE1◦E0 = SE1SE0 .

Proof. Let K = {NℓMk; 0≤ k < n0, 0≤ ℓ < n1, n0,n1 ∈ N ̸=0}. K satisfies the completeness equation since

∑
ℓ,k
(NℓMk)

†(NℓMk) = ∑
ℓ,k
(M†

k N†
ℓ )(NℓMk) = ∑

k
M†

k

(
∑
ℓ

N†
ℓ Nℓ

)
Mk = ∑

k
M†

k Mk = I.

Hence, K is a set of Kraus operators for E1 ◦ E0. By Lemma 2.7, SE1◦E0 = ∑ℓ,k(NℓMk)
∗⊗ (NℓMk). Using the

linearity and cyclicity of trace with the property that Tr[A⊗B] = Tr[A]Tr[B],

SE1◦E0 = ∑
ℓ,k
(NℓMk)

∗⊗ (NℓMk)

= ∑
ℓ,k
(N∗ℓ M∗k )⊗ (NℓMk)

= ∑
ℓ,k
(N∗ℓ ⊗Nℓ)(M∗k ⊗Mk)

=

(
∑
ℓ

(N∗ℓ ⊗Nℓ)

)(
∑
k
(M∗k ⊗Mk)

)
= SE1SE0 .
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Lemma 2.11. Let E0 and E1 be two quantum channels with respective sets of Kraus operators {Mk; 0 ≤ k <
n0, n0 ∈ N ̸=0} and {Nℓ; 0 ≤ ℓ < n1, n1 ∈ N ̸=0}. E0 and E1 have compatible dimensions. ∑M†

k Mk = I0 and
∑N†

ℓ Nℓ = I1, I0 and I1 are identity matrices.

Tr[SE0⊗E1 ] = Tr[SE0 ]Tr[SE1 ].

Proof. Let K = {Mk⊗Nℓ; 0≤ k < n0, 0≤ ℓ < n1, n0,n1 ∈ N ̸=0}. K satisfies the completeness equation since

∑
k,ℓ
(Mk⊗Nℓ)

†(Mk⊗Nℓ) = ∑
k,ℓ
(M†

k ⊗N†
ℓ )(Mk⊗Nℓ) = ∑

k,ℓ
(M†

k Mk)⊗ (N†
ℓ Nℓ) =

(
∑
k

M†
k Mk

)
⊗
(
∑
ℓ

N†
ℓ Nℓ

)
= I.

Hence, K is a set of Kraus operators for E0⊗E1. Using the linearity of trace and the property that Tr[A⊗B] =
Tr[A]Tr[B],

Tr[SE0⊗E1 ] = Tr
[
∑
k,ℓ
(Mk⊗Nℓ)

∗⊗ (Mk⊗Nℓ)
]

= ∑
k,ℓ

Tr
[
(M∗k ⊗N∗ℓ )⊗ (Mk⊗Nℓ)

]
= ∑

k,ℓ
Tr[M∗k ]Tr[N∗ℓ ]Tr[Mk]Tr[Nℓ]

= ∑
k,ℓ

Tr[M∗k ]Tr[Mk]Tr[N∗ℓ ]Tr[Nℓ]

= ∑
k,ℓ

Tr[M∗k ⊗Mk]Tr[N∗ℓ ⊗Nℓ]

= ∑
k

Tr[M∗k ⊗Mk]∑
ℓ

Tr[N∗ℓ ⊗Nℓ]

= Tr
[
∑
k

M∗k ⊗Mk

]
Tr
[
∑
ℓ

N∗ℓ ⊗Nℓ]
]
= Tr[SE0 ]Tr[SE1 ].

2.4.2 Average Gate Fidelity

In an ideal world, a quantum algorithm can be precisely implemented by a sequence of carefully selected
gates, and the state evolution is described by a unitary transformation. Let U be the linear map describing its
transformation and U be its unitary matrix representation. Then U(ρ) =UρU† denotes the ideal evolved state
of ρ . In reality, quantum operations are prone to errors and U is approximated by a noisy quantum channel E .
By Definition 2.12, E(ρ) denotes the actual evolved state of ρ ,

E(ρ) = ∑
k

MkρM†
k . (11)

When E is "close" to U , the resulting quantum evolution is closely aligned with the desired algorithm. Let
σ be the density operator describing the quantum state of another physical system. Recall that in [43], the state
fidelity of ρ and σ is defined as F(ρ,σ),

F(ρ,σ) =

(
Tr
[√√

ρ σ
√

ρ

])2

. (12)

Let E(ρ) denote the final state of ρ after the action of E . The gate fidelity, FU ,E(ρ), is defined as state
fidelity of E(ρ) and U(ρ),

FU ,E(ρ) =

(
Tr
[√√

U(ρ) E(ρ)
√
U(ρ)

])2

. (13)
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When the input state is a pure state, ρ = |ψ⟩⟨ψ| where |ψ⟩ is the state vector. Using the cyclic property of
trace, Equation (13) is reduced to Equation (14).

FU ,E(|ψ⟩⟨ψ|) =
(

Tr
[√

U |ψ⟩⟨ψ|U†E(|ψ⟩⟨ψ|)
])2

= ⟨ψ|U†E(|ψ⟩⟨ψ|)U |ψ⟩. (14)

In Equation (15), we obtain the average gate fidelity by integrating over all pure input states [12]. It
provides a concise measure of error independent of the input state. This is more accurate than merely counting
the number of CNOT gates [26, 25, 48, 39] or calculating the sum of CNOT gate error rates [71]. Hence, we
use it as a cost function to gauge the proximity between the dynamic evolution and the desired evolution.

Favg(E ,U) =
∫

dψFU ,E(|ψ⟩⟨ψ|) =
∫

dψ⟨ψ|U†E(|ψ⟩⟨ψ|)U |ψ⟩. (15)

Let p be the error rate of a noisy quantum channel E whose ideal operation is U . Then

p = 1−Favg(E ,U). (16)

Next, we show that the average gate fidelity assesses how closely E approximates U independent of the
input states. We start by simplifying Equation (15) and let E ′ = U−1 ◦ E . Accordingly, the modified set of
Kraus operators is {M′k; M′k =U†Mk}. To compute Favg(E ,U), it is equivalent to calculate Favg(E ′,I).
Lemma 2.12.

Favg(E ,U) = Favg(E ′,I).

Proof. Note that ∑M†
k Mk = I and U is unitary. Then {M′k; M′k =U†Mk} is a valid set of Kraus operators, since

∑Mk
′†M′k = ∑(U†Mk)

†(U†Mk) = ∑M†
k (UU†)Mk = ∑M†

k Mk = I.

Based on Equations (11) and (15), we have

Favg(E ,U) =
∫

dψ⟨ψ|U†
(
∑Mk|ψ⟩⟨ψ|M†

k

)
U |ψ⟩

=
∫

dψ⟨ψ|
(
∑U†Mk|ψ⟩⟨ψ|M†

kU
)
|ψ⟩

=
∫

dψ⟨ψ|
(
∑M′k|ψ⟩⟨ψ|Mk

′†
)
|ψ⟩

=
∫

dψ⟨ψ|E ′(|ψ⟩⟨ψ|)|ψ⟩= Favg(E ′,I).

For brevity, we write Favg(E ′) for Favg(E ′,I). [32, 50] provide an alternative expression for the average gate
fidelity, as shown in Equation (17). Fpro(E ′,I) is called the process fidelity (a.k.a., the entanglement fidelity)
and it gauges the overlap between ρ before and after the application of E ′. It describes how well the quantum
information in a system and the entanglement with other systems are preserved [62].

Favg(E ′) =
tFpro(E ′)+1

t +1
. (17)

Lemma 2.13.
Fpro(E ′) =

Tr[SE ′ ]
t2 .
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Proof details could be found in Appendix A. Combining Lemmas 2.12 and 2.13, we have

Favg(E ′) =
tFpro(E ′)+1

t +1
=

Tr[SE ′ ]
t(t +1)

+
1

t +1
. (18)

Finally, by using Equations (16) and (18), we derive an equality that will be used in Section 3.2.

Favg(E) = 1− p =
Tr[SE ]

t(t +1)
+

1
t +1

. (19)

3 Quantify the Reliability of a Noisy CNOT Circuit

To gauge the quality of a noisy CNOT circuit, we define a cost function by approximating

Definition 3.1. Let E be an error channel. The error probability of E is Prob(E),

Prob(E) = 1−Favg(E).

Since the size of the superoperator in Equation (19) scales exponentially with the number of qubits in the
system, exactly computing Favg(E) demands a substantial amount of computational resource. In light of this,
we model a noisy CNOT circuit using both the parallel error channel and the consecutive error channel.
Based on the NISQ specifics (the number of physical qubits, and the range of CNOT gate error rates), we find
a tight approximation for the average gate fidelity and use it as our cost function. The higher it is, the worse the
performance of a noise-aware CNOT circuit routing algorithm.

Definition 3.2. Let C be an n-qubit quantum circuit with m noisy gates. Numbering each gate from left to right,
Prob(Ei) is the error probability of the i-th noisy channel Ei. Let Cost(C) be a cost function of C.

Cost(C) = 1−
m−1

∏
i=0

(1−Prob(Ei)).

In Sections 3.1 and 3.2, we characterize a noisy parallel and consecutive error channels using the super-
operator representation and calculate their respective average gate fidelity. In Section 3.3, we combine both to
approximate the average gate fidelity of a noisy CNOT circuit and formally define its cost function based on
Definition 3.2.

3.1 Parallel Error Channel

A parallel error channel Eq is vertically composed of channels with arbitrary input and output dimensions. Let
t be its input dimension. As shown in Figure 13a, E0 and E1 are two error channels followed by two ideal
operations U0 and U1. U0 and U1 are their respective unitary matrix representations. Let p0 and p1 be the
error rates of E0 and E1. Let d0 and d1 be the respectively input dimensions and k ∈ {0,1}. t = d0d1. By
Equation (19), we can express Tr[SEk ] in terms of dk and pk.

Tr[SEk ]

d2
k

= 1− dk +1
dk

pk. (20)
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E0 U0

E1 U1

...
...

...

...
...

...

(a) The error channel Eq is vertically composed of two error chan-
nels E0 and E1, followed the respective ideal operations U0 and U1.
E0 has an error rate p0 and E1 has an error rate p1. Their input di-
mensions are d0 and d1.

0
1 ECNOT

0
⊕

2

n-1

E Idle
1

•

...
...

(b) Without loss of generality, suppose that Eq is composed of two
parallel channels, ECNOT

0 and E Idle
1 . ECNOT

0 is the error channel of a
noisy CNOT gate. Its error rate is p0. E Idle

1 is the error channel of
n−2 idle qubits. Its error rate is p1.

Figure 13: The parallel error channels.

Lemma 3.1. Let Eq be an n-qubit channel that is vertically composed of two noisy channels E0 and E1, with
input dimension d0 and d1, error probability p0 and p1. Eq = E0⊗E1, dq = d0d1 = 2n. dq is the input dimension
of Eq. Then

Fave(Eq) = 1− p0− p1 + p0 p1 +
(1−d1)p0 +(1−d0)p1 +(d0 +d1)p0 p1

d0d1 +1
.

Proof. Applying Lemma 2.11 with Equations (19) and (20), we have

Favg(Eq) = Favg(E0⊗E1) =
Tr[SE0⊗E1 ]

(d0d1)2 ×
d0d1

d0d1 +1
+

1
d0d1 +1

=
Tr[SE0 ]

d2
0

Tr[SE1 ]

d2
1
× d0d1

d0d1 +1
+

1
d0d1 +1

= 1− p0− p1 + p0 p1 +
(1−d1)p0 +(1−d0)p1 +(d0 +d1)p0 p1

d0d1 +1
(21)

Technical details can be found in Appendix A.

3.2 Consecutive Error Channel

A consecutive error channel Ec is horizontally composed of channels with compatible input and output dimen-
sions. Let t be its input dimension. In Figure 14, E0 and E1 are two error channels followed by two ideal
operations U0 and U1. U0 and U1 are their respective unitary matrix representations. Let p0 and p1 be the error
rates of E0 and E1. Let d0 and d1 be the respective input dimensions and k ∈ Z2. t = d0 = d1.

Ec = U1 ◦E1 ◦U0 ◦E0.

Here ◦ denotes the composition of linear maps.

E0 U0
...

...
... E1 U1

...
...

Figure 14: The error channel Ec is horizontally composed of two error channels E0 and E1, followed the respective ideal
operations U0 and U1.

Lemma 3.2. When two noisy Clifford channels are composed horizontally, the identity in Figure 15 holds.
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E0 U0
...

...
... E1 U1

...
... = U0 E ′0

...
...

... E1 U1
...

...

Figure 15: Ec is composed of two noisy Clifford gates. Let n be the number of qubits. p0 and p1 are the error rates of E0
and E1. Their input dimensions are identical, d0 = d1 = 2n. U0 and U1 are the respective unitary matrix representations of
U0 and U1. U0, U1 ∈ Cn.

Proof. Let ρ be the density matrix describing the initial state of the quantum system in Figure 15. It is sufficient
to show that

U0 ◦E0(ρ) = E ′0 ◦U0(ρ).

By Definition 2.16, let {Mk} be a set of Kraus operators of E0 such that Ek ∈ Bn,

Mk =
√

PkEk, ∑M†
k Mk = I, ∑Pk = 1, 0≤ Pk ≤ 1.

Since U0 ∈ Cn and Ek ∈ Pn, U0EkU
†
0 = E ′k, E ′k ∈ Pn. Let M′K =

√
PkE ′k. It follows that

U0Ek = E ′kU0, U0Mk = M′kU0 (22)

Since ∑PkE†
k Ek = I and U0 is unitary, to show that ∀k, M′k =

√
PkE ′k are valid Kraus operators, we have

∑M′†kM′k = ∑PiE ′
†
kE ′k = ∑Pi

(
U0E†

k U†
0

)(
U0EkU

†
0

)
= ∑Pi

(
U0E†

k EkU
†
0

)
=U0

(
∑PkE†

k Ek

)
U†

0 =U0IU†
0 = I.

Hence, there exists a channel E ′0 over E ′k such that E ′0(ρ) = ∑M′kρM′†k . Therefore,

LHS = U0 ◦E0(ρ) = U0

(
E0(ρ)

)
= ∑U0

(
MkρM†

k

)
= ∑U0

(
MkρM†

k

)
U†

0

= ∑M′kU0ρU†
0 M

′†
k

= ∑M′k
(
U0(ρ)

)
M
′†
k

= E ′0 ◦U0(ρ) = RHS

Remark 3.1. Let m ∈N, Lemma 3.2 generalizes to a horizontal composition of m noisy Clifford channels. This
can be proved by induction on the number of CNOT gates.

Corollary 3.1. Up to Clifford conjugation, the composite error channel in Figure 14 is Ec = E1 ◦E0. Moreover,

Favg(Ec) =
Tr[SE1SE0 ]

t(t +1)
+

1
t +1

Proof. By Equation (19) and lemma 2.10, we can calculate the average gate fidelity Ec as

Favg(Ec) = Favg(E1 ◦E0) =
Tr[SE1◦E0 ]

t2 × t
t +1

+
1

t +1
=

Tr[SE1SE0 ]

t(t +1)
+

1
t +1

.
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Lemma 3.3. Let I be an identity matrix of size t2× t2. For k ∈ Z2, Ak = I−SEk .

Tr[SE1SE0 ] = Tr[SE0 ]+Tr[SE1 ]− t2 +Tr[A1A0]

Proof. By the linearity of trace,

Tr[Ak] = Tr[I−SEk ] = Tr[I]−Tr[SEk ] = t2−Tr[SEk ].

It follows that

Tr[SE1SE0 ] = Tr[(I−A1)(I−A0)]

= Tr[I−A1−A0 +A1A0]

= t2−Tr[A1]−Tr[A0]+Tr[A1A0]

= Tr[SE0 ]+Tr[SE1 ]− t2 +Tr[A1A0].

Lemma 3.4. Let t = 2n be the input dimension of Ec. For k ∈ Z2, dk = t is the input dimension of an error
channel Ek with error probability pk. If Ec = E1 ◦E0 and Ak = I−SEk ,

(t +1)2 p0 p1 ≤ Tr[A1A0]≤ 2(t +1)2 p0 p1.

Proof. Justification is detailed in Appendix A.

Lemma 3.5. Let Ec be an n-qubit channel that is horizontally composed of two noisy channels E0 and E1, with
input dimensions d0 and d1, error probabilities p0 and p1. 0≤ p0, p1 ≤ 1. Ec = E1 ◦E0, t = d0 = d1 = 2n. t is
the input dimension of Ec. Then

0≤ Favg(Ec)− (1− p0)(1− p1)≤
(

1+
1

2n−1

)
p0 p1.

Proof. Based on Equation (19),

Tr[SE0 ] = t(t +1)(1− p0)− t, Tr[SE1 ] = t(t +1)(1− p1)− t.

By Corollary 3.1 and lemma 3.3, we have

Favg(Ec) =
Tr[SE0 ]+Tr[SE1 ]− t2 +Tr[A1A0]

t(t +1)
+

1
t +1

=
t(t +1)(1− p0)− t + t(t +1)(1− p1)− t− t2

t(t +1)
+

Tr[A1A0]

t(t +1)
+

1
t +1

= 1− p0− p1 +
Tr[A1A0]

t(t +1)
.

(23)

Combining Lemma 3.4 and equation (23), we get

1− p0− p1 + p0 p1 +
1
t

p0 p1 ≤ Favg(Ec)≤ 1− p0− p1 +2p0 p1 +
2
t

p0 p1. (24)

Since d = 2n,
1
2n p0 p1 ≤

[
Favg(Ec)− (1− p0− p1 + p0 p1)

]
≤ p0 p1 +

2
2n p0 p1.

Therefore,

0≤ Favg(Ec)− (1− p0− p1 + p0 p1)≤ p0 p1 +
2
2n p0 p1 =

(
1+

1
2n−1

)
p0 p1.
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3.3 Approximate Average Gate Fidelity

To simplify discussions, we assume no parallelization of quantum gates and no noise on idle qubits. Then any
noisy quantum circuit can be modelled as a horizontal composition of noisy gates. Figure 16 shows an example
of a noisy CNOT circuits over 4 qubits.

|q0⟩

|q1⟩

|q2⟩

|q3⟩

•

⊕ •

⊕
•⊕|q0⟩

|q1⟩

|q2⟩

|q3⟩

•

⊕ •

⊕
•⊕

=

|q0⟩

|q1⟩

|q2⟩

|q3⟩

•

⊕ •

⊕
•⊕

ECX
0

ECX
1

ECX
2

=

Figure 16: Any noisy CNOT circuit is horizontally composed of noisy CNOT gates when we assume no gate paralleliza-
tion.

Combining the notions developed in Sections 3.1 and 3.2, Definition 3.3 specifies a cost function for a noisy
CNOT circuit C. By Lemma 3.2, consider an equivalent circuit of C where the noisy channel for each CNOT
gate is placed adjacent to each other. Let Ec be this horizontally composed noisy channel. Let m be the number
of CNOT gates in the circuit.

When a channel is composed of one noisy CNOT gate When m = 1, based on Lemma 3.1, we can calculate
the error probability of a noisy CNOT channel.

Corollary 3.2. Let Eq be an n-qubit error channel for a noisy CNOT gate, with error rate p and (n− 2) idle
qubits. Then, Prob(Eq) =

(
1+ 2n−2−1

2n+1

)
p.

Proof. Without loss of generality, suppose that Eq is composed of two parallel channels, ECNOT
0 and E Idle

1 , as
shown in Figure 13b. ECNOT

0 is the error channel of a noisy CNOT gate. Its error rate is p0 = p. E Idle
1 is the error

channel of n− 2 idle qubits. Its error rate is p1. By assumption, p1 = 0. Moreover, d0 = 22 = 4, d1 = 2n−2.
Substituting the variables in Equation (21), we have

Favg(Eq) = 1− p0− p1 + p0 p1 +
(1−d1)p0 +(1−d0)p1 +(d0 +d1)p0 p1

d0d1 +1

= 1− p−0+0+
(1−2n−2)p+0+0

22×2n−2 +1

= 1−
(
1+

2n−2−1
2n +1

)
p

By Definition 3.1, Prob(Eq) = 1−Favg(Eq) =
(
1+ 2n−2−1

2n+1

)
p.

When a channel is composed of two noisy CNOT gates When m= 2, based on Corollary 3.2 and lemma 3.5,
we can calculate the error probability of two horizontally composed noisy CNOT channels.

Corollary 3.3. Let C be an n-qubit circuit with two noisy CNOT gates. Let E0 and E1 be their respective error
channels with error rates p0 and p1. Assume no parallelization of CNOT gates. In each channel, there are
(n−2) idle qubits. Let α = 1+ 2n−2−1

2n+1 . Then,

0≤ Favg(Ec)− (1−Prob(E0))(1−Prob(E1))≤
(

1+
1

2n−1

)
α

2 p0 p1.
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Proof. By Corollary 3.2, the error probabilities of E0 and E1 are

Prob(E0) = α p0, Prob(E1) = α p1.

Substituting p0 and p1 by Prob(E0) and Prob(E1) in Lemma 3.5, we have

0≤ LHS≤
(

1+
1

2n−1

)
(α p0)(α p1) =

(
1+

1
2n−1

)
α

2 p0 p1 = RHS.

When a channel is composed of multiple noisy CNOT gates Definition 3.3 proposes a new cost function
for a noisy CNOT circuit based on inspecting the approximated form of error probability in simpler cases.
In Section 5.1, we compare it with the sum of CNOT error rates and the average gate fidelity by running
simulations with CNOT circuits of small size.

Definition 3.3. Let d = 2n be the input dimension of Ec. For all m ∈ N and k ∈ Zm, dk = d is the input
dimension of an error channel Ek consists of a noisy CNOT gate with error rate pk. Let α = 1+ 2n−2−1

2n+1 . Assume
no parallelization of CNOT gates. In each channel, there are (n−2) idle qubits. Then,

Cost(Ec) = 1−
m−1

∏
i=0

(1−α pi).

Remark 3.2. For all n ∈ N, 1 < α < 5
4 , since

0 <
2n−2−1
2n +1

, 1+
2n−2−1
2n +1

< 1+
2n−2

2n = 1+
1
4
=

5
4
.

For all m ∈ N, i ∈ Zm, when 0 < pi < 0.8, 0 < α pi < 1, since

0 < α pi <
5
4

pi < 1.

Appendix C shows that in all benchmarked backends, the error rate of any CNOT gate is bounded by 0.1.
By Remark 3.2, for any synthesized CNOT circuit Csyn, Cost(Csyn) ranges between 0 and 1.

4 Noise-Aware CNOT Circuit Routing: NAPermRowCol

A noise-aware CNOT circuit routing algorithm maps a logical CNOT circuit C to a NISQ hardware. It takes
C’s parity matrix A and an undirected edge-weighted connected graph G as inputs. A vertex in G corresponds
to a physical qubit. An edge in G represents an allowed CNOT operation on the qubits corresponding to its
endpoints. Its edge weight records the CNOT gate error rate. In Section 2.3.2, we introduce the technicality
of the connectivity-aware CNOT synthesis algorithm PermRowCol [26]. Here, we propose a noise-aware
CNOT circuit routing algorithm by adapting PermRowCol and utilizing the Cost evaluation. It reduces noise-
aware CNOT circuit routing to a Steiner tree problem while accounting for nearest-neighbour interactions and
CNOT gate error rates. Since its Cost-instructed heuristics make PermRowCol aware of noises, it is named
“NAPermRowCol”. “NA” stands for “Noise-Aware”.

In Section 4.1, we offer an overview of NAPermRowCol, by presenting a comprehensive summary of its
workflow and the intuition behind its technical aspects. In Section 4.2, we explain NAPerRowCol’s noise-
aware adaptation of PermRowCol. To keep things straightforward, we assume a naive qubit mapping strategy
that assigns logical qubit i to physical qubit i. It is important to mention that NAPermRowCol is designed to be
compatible with an arbitrary initial qubit mapping strategy.
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4.1 The Workflow of NAPermRowCol

NAPermRowCol synthesizes A by carrying out a sequence of reduction steps. Before each reduction step,
a pivot row r and a pivot column c are selected based on the connectivity and edge weights of G, the Cost
evaluation, and the binary structure of A. A reduction step involves two actions: a column reduction which
transforms column c to a basis vector er, and a row reduction which transforms row r to a transposed basis
vector e⊤c . Both reductions are achieved by applying a sequence of Steiner-tree-instructed row operations on A.
After a reduction step, vertex r is removed from G. The algorithm terminates when there is one vertex left in
G. In the meantime, A is reduced to a permutation matrix P. Since each row operation corresponds to a CNOT
gate, each reduction step outputs a CNOT sequence. NAPermRowCol concatenates these CNOT gates and
returns a synthesized circuit Csyn composed of allowed CNOT operations, with P for qubit relabeling. More
precisely, Csyn is semantically equivalent to C up to permuting logical qubits in quantum registers.

Since SWAP gates are factored out of Csyn, the synthesized CNOT count is drastically eliminated. Since
noise-aware greedy heuristics are applied to build and traverse a weighted Steiner tree, the cheapest solution is
picked for each reduction step and the reliability of a synthesized CNOT subcircuit is maximized. As a result,
NAPermRowCol produces a NISQ-executable CNOT circuit for C with reduced circuit execution time and
enhanced fidelity. In what follows, we break down the crux of NAPermRowCol through a two-step explanation.

First, we explain how to find the cheapest sequence of row operations for a reduction step. Given a pivot
column c, let S0 be the set of rows that have a parity of 1. r ∈ S0 and |S0| > 1. Build a Steiner tree T0 of G
where r is the root and S0 is the terminal. The Steiner nodes correspond to the rows that have a parity of 0.
Procedure 4.2 finds the cheapest path to move the parity of terminal nodes to Steiner nodes. After this traversal,
all Steiner nodes will carry a parity of 1. Then traverse T0 from the leaves to the root and add every parent p to
its child c. After the second traversal, the parity 1 from the root will be propagated to every other node in T0.
As a result, every row in column c has a parity of 0 except for row r. Column c is reduced to the basis vector er

and the column reduction is completed.
Given a pivot row r, we start by solving a system of linear equations and find rows in A such that

⊕
rk =

e⊤c ⊕ r. Let S1 be the set of these indices k including the pivot index r. Build a Steiner tree T1 where r is
the root and S1 is the terminal. Detailed in Procedure 4.3, the first traversal of T1 is similar to Procedure 4.2,
except that u and v have their roles exchanged. Next, traverse T1 from the leaves to the root and add every
child c to its parent p. After the second traversal, the parity on each terminal node is propagated to the root
and added together. Since the Steiner nodes are added twice modulo 2 throughout the two traversals, they do
not participate in the desired parity summation. As a result, every column in row r has a parity of 0 except for
column c. Row r is reduced to the basis vector e⊤c and the row reduction is completed.

Second, we explain the noise-aware pivot selection. Since each row corresponds to a physical qubit, the
removal of vertex r must not disconnect G. Among all non-cut vertices, Procedure 4.4 prioritizes rows with
the lowest Hamming weight, followed by the rows tied to vertices having the lowest average incident edge
weight. After selecting the pivot row, Procedure 4.5 exhaustively calculates the minimum Cost of each candi-
date column according to Procedure 4.2, and then picks the one that induces the cheapest solution as the pivot
column.

Finally, we consolidate all components and outline the complete workflow of NAPermRowCol.

Procedure 4.1. To synthesize a CNOT circuit C according to a NISQ architecture, let A be C’s parity matrix.
G = (VG,EG,ωG) is an undirected edge-weighted connected graph characterizing the physical restrictions.
ωG : EG→ {x ∈ R; 0≤ x < 1}. For e = (u,v) ∈ EG, ωG(e) is the error rate of coupling physical qubits u and
v. NAPermRowCol takes A and G as inputs. When A is not a permutation matrix, proceed as follows.

1. Procedure 4.4 picks a pivot row r.

2. Procedure 4.5 picks a pivot column c.

3. Procedure 4.2 carries out a column reduction on A. Let A0 be the transformed parity matrix.

4. Procedure 4.3 carries out a row reduction on A0. Let A1 be the transformed parity matrix.

5. Remove vertex r from G.
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6. Remove the pivot row and column from A1. Let A be the updated parity matrix.

7. Go to step 1 until there is precisely one vertex left in G.

8. Assemble the permutation matrix P based on the reduced row and column in each reduction step.

9. Concatenate row operations output from each reduction step. Lemma 2.3 returns a synthesized circuit
Csyn with P.

Thanks to the implementation of the Cost function, NAPermRowCol is scalable and has the potential to
route a more complicated quantum circuit on NISQ hardware. Compared to algorithm GENNS whose reduction
step halts due to an invalid row operation [74], it is not restricted to an initial qubit map. Compared to the Qiskit
transpiler, it does not require ancillary qubits, making it more efficient in terms of resource usage and more
suitable for large-scale noise-aware circuit routing.

4.2 Noise-Aware Heuristics

Similar to PermRowCol, NAPermRowCol proceeds by iteratively selecting a pivot row and column, then re-
ducing them to basis vectors with a sequence of row operations. Given a pivot column c, let S0 be the set of
rows that have a parity of 1. In the nontrivial case, |S0| > 1. Let T0 = Steiner(G,S0). A traversal of T0 is
represented by an ordered set of edges, wT0 . When |wT0 |= t, it corresponds to applying t row operations on A.
Let pi be the weight of the i-th edge in wT0 , i ∈ Zt . The Cost of wT0 is calculated as

Cost(wT0) = 1−
m−1

∏
i=0

(1−α pi), α = 1+
2n−2−1
2n +1

. (25)

Recall that there are two traversals in Procedure 2.3. In NAPermRowCol, we optimize the first traversal
based on the Cost function, keeping the second traversal the same as in PermRowCol.

Procedure 4.2. In T0 = Steiner(G,S0), to find the cheapest path to move the parity of terminal nodes to Steiner
nodes, proceed as follows.

1. For a Steiner node v ∈VT0 \S0 that has not yet been picked: (1) For every terminal node u ∈ S0, use Dijk-
stra’s Algorithm to find the cheapest path from u to v according to the Cost evaluation in Equation (25).
(2) Pick the cheapest one among them. Express it as an ordered set and add it to the collection of optimal
solutions Opt.

2. Go to step 1 until all Steiner nodes are considered.

3. Use the union operation for all ordered sets in Opt to find a combined solution.

4. Return the ordered set of the combined solution with its Cost evaluation.

For every candidate column, the traversal on T0 and its associated Cost are saved in memory. This enables
us to quickly access the Cost evaluation and corresponding row operations after a pivot column is selected. As
a result, this enhances the time efficiency of NAPermRowCol.

Lemma 4.1. Given T0 = Steiner(G,S0), Procedure 4.2 is well-defined. In other words, it is not possible to
encounter a situation depicted in Figure 17, where the cheapest paths for different Steiner nodes cross over
each other. By “cross over”, we mean two paths share an edge (a,b). One path goes from a to b, while the
other goes from b to a.
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Figure 17: In T0 = Steiner(G,S0), a and b are Steiner nodes. (a,b) denotes the edge between them with weight q. Among
all terminal nodes, let t0 and t1 be the ones that have the cheapest paths ℓ0 and ℓ1 to b and a respectively. Starting from t0,
w0 is the collection of edges on ℓ0 between t0 and a. Starting from t1, w1 is the collection of edges on ℓ1 between t1 and b.

Proof. Suppose towards contradiction that the cheapest path ℓ1 for a and the cheapest path ℓ0 for b overlaps on
edge (a,b). According to Procedure 4.2,

Cost(ℓ0)≤ Cost(w1), Cost(ℓ1)≤ Cost(w0). (26)

Suppose there are m0 and m1 edges in w0 and w1 respectively. q is the edge weight of (a,b). pi and p j

denote the weight of the i-th edge in w0 and the j-th edge in w1. 0≤ i < m0, 0≤ j < m1. Let α be the constant
specified in Definition 3.3. Then

Cost(w0) = 1−
m0−1

∏
i=0

(1−α pi), Cost(w1) = 1−
m1−1

∏
j=0

(1−α p j). (27)

Cost(ℓ0) = 1−

(
m0−1

∏
i=0

(1−α pi)

)
(1−αq), Cost(ℓ1) = 1−

(
m1−1

∏
j=0

(1−α p j)

)
(1−αq). (28)

Combining Equations (26) to (28), we have

1−

(
m0−1

∏
i=0

(1−α pi)

)
(1−αq)≤ 1−

m1−1

∏
j=0

(1−α p j). (29)

1−

(
m1−1

∏
j=0

(1−α p j)

)
(1−αq)≤ 1−

m0−1

∏
i=0

(1−α pi). (30)

From Equations (29) and (30), we have

m1−1

∏
j=0

(1−α p j)≤

(
m0−1

∏
i=0

(1−α pi)

)
(1−αq) =

m0−1

∏
i=0

(1−α pi)−αq

(
m0−1

∏
i=0

(1−α pi)

)
. (31)

m0−1

∏
i=0

(1−α pi)≤

(
m1−1

∏
j=0

(1−α p j)

)
(1−αq) =

m1−1

∏
j=0

(1−α p j)−αq

(
m1−1

∏
j=0

(1−α p j)

)
. (32)

According to the empirical data of IBM’s fake backends, the error rate of any CNOT gate is bounded by
0.1. By Remark 3.2, 0 < α pi,α p j,αq < 1. From Equation (31),

0 < αq

(
m0−1

∏
i=0

(1−α pi)

)
≤

m0−1

∏
i=0

(1−α pi)−
m1−1

∏
j=0

(1−α p j). (33)

From Equation (32),

m0−1

∏
i=0

(1−α pi)−
m1−1

∏
j=0

(1−α p j)≤−αq

(
m1−1

∏
j=0

(1−α p j)

)
< 0. (34)
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Equations (33) and (34) yields a contradiction. Hence, there is no crossover between the cheapest paths of
different Steiner nodes.

Recall that there are two traversals in Procedure 2.4. In NAPermRowCol, we optimize the first traversal
based on the Cost function, keeping the second traversal the same as in PermRowCol.
Procedure 4.3. In T1 = Steiner(G,S1), to find the cheapest path to move the parity of Steiner nodes to terminal
nodes, proceed as follows.

1. For a Steiner node v ∈VT1 \S1 that has not yet been picked: (1) For every terminal node u ∈ S1, use Dijk-
stra’s Algorithm to find the cheapest path from v to u according to the Cost evaluation in Equation (25).
(2) Pick the cheapest one among them. Express it as an ordered set and add it to the collection of optimal
solutions Opt.

2. Go to step 1 until all Steiner nodes are considered.

3. Use the union operation for all ordered sets in Opt to find a combined solution.

4. Return the ordered set of the combined solution with its Cost evaluation.

Lemma 4.2. Given T1 = Steiner(G,S1), Procedure 4.3 is well-defined. In other words, it is not possible to
encounter a situation depicted in Figure 18, where the cheapest paths for different Steiner nodes cross over
each other. By “cross over”, we mean two paths share an edge (a,b). One path goes from a to b, while the
other goes from b to a.

Figure 18: In T1 = Steiner(G,S1), a and b are Steiner nodes. (a,b) denotes the edge between them with weight q. Among
all terminal nodes, let t0 and t1 be the ones that have the cheapest paths ℓ0 and ℓ1 from b and a respectively. Ending at t0,
w0 is the collection of edges on ℓ0 between t0 and a. Ending at t1, w1 is the collection of edges on ℓ1 between t1 and b.

The symmetry of the graph traversal in Lemma 4.1 leads to the validity of Lemma 4.2. Next, we adjust
Procedure 2.1 with a greedy heuristic. Since each row corresponds to a physical qubit, the removal of vertex r
must not disconnect G.
Procedure 4.4. To select a pivot row from A, proceed as follows.

1. Among all non-cut vertices, select rows with the lowest Hamming weight to form R0.

2. From R0, pick rows tied to vertices having the lowest average incident edge weight to form R1.

3. Choose any row from R1 as the pivot, noting its index as r.

Lastly, we adjust Procedure 2.2 by leveraging the noise-aware heuristic in Procedure 4.2.
Procedure 4.5. Given the pivot row r, to select a pivot column from A, proceed as follows.

1. Among all columns in A, find the set of columns that have a non-zero entry at row r. Let it be C0.

2. If there exists a basis vector in C0, let it be the pivot column and note its index as c.

3. Otherwise, for each column c ∈C0: (1) Build a Steiner tree T0 = Steiner(G,S0) with r as its root. S0 is
the set of rows that have a parity of 1 in c. |S0|> 1. (2) Input T0 to Procedure 4.2.

4. From C0, select columns with the cheapest Cost to form C1.

5. Choose any column from C1 as the pivot, noting its index as c.
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5 Benchmark Results

IBM’s fake backends mimic the behaviours of its quantum computers using system snapshots. They contain
important information such as coupling maps, basic gates, qubit qualities (e.g., T1 and T2 time), and gate error
rates. In our simulation of a noisy CNOT circuit, we consider the coupling map and use three backends of
different sizes: fake Nairobi (7 qubits, Figure 23), fake Guadalupe (16 qubits, Figure 24), and fake Cairo (27
qubits, Figure 25). They are one of the most well-developed IBM’s backends with relatively low CNOT gate
error rates. Moreover, they have distinct topologies, which help us evaluate the adaptability of NAPermRowCol
to different backends. In addition, they are commonly used for benchmarking different synthesis algorithms
in the recent literature, so we use them to carry out in-depth comparisons between different CNOT synthesis
algorithms. In this section, we discuss the simulation and benchmark results on the fake Nairobi backend with
randomly generated CNOT circuits. In Appendices D and E, we report the results using the fake Guadalupe
and Cairo backends.

When a circuit consists of n qubits, it is of width n. The input dataset1 consists of CNOT circuits of widths
5, 7, and 16. Using the same circuit generation method as [26, 39], we extend this dataset with circuits of
widths 6 and 7. To create more variations of input circuits, we increase the CNOT count for circuits of the same
width. For versions of important Python packages and our system specifications, please check out Appendix B.

In Section 5.1, for a synthesized CNOT circuit Csyn, we compare the cost function Cost(Csyn) (Defini-
tion 3.3) with other commonly used cost functions against the error probability Prob(Csyn) = 1−Favg(Csyn).
Due to the limited scalability of calculating Favg(Csyn), our comparison is restricted to Csyn of width no more
than 7. Based on the simulation results, Cost(Csyn) fits Prob(Csyn) up to 10−3. In addition, its simple expres-
sion allows us to efficiently calculate the cost associated with a noisy CNOT circuit. To synthesize a large
CNOT circuit, we use Cost to measure a circuit’s noise levels and instruct the error mitigation strategy.

In Section 5.2, we compare the performance of different synthesis algorithms in terms of the Cost metric
and the synthesized CNOT count (i.e., the gate count of a synthesized CNOT circuit that is physically exe-
cutable on NISQ hardware). NAPermRowCol performs significantly better than Qiskit transpiler, especially for
circuits with a larger number of CNOT gates. Compared with algorithms that are noise-agnostic (PermRowCol
and ROWCOL), NAPermRowCol lowers the synthesized CNOT count and is much cheaper for synthesizing
random CNOT circuits of different sizes (i.e., different widths and the original CNOT counts). According to
the benchmark results, NAPermRowCol provides an improved solution to the CNOT circuit synthesis problem.
It not only reduces the CNOT counts, but also minimizes the overall error probabilities.

5.1 Compare Different Cost Functions

Utilizing the Qiskit Python package, we compute the average gate fidelity of a noisy CNOT circuit via super-
operator simulation. Since this requires a substantial amount of resources, we calculate Favg(Csyn) where Csyn

has no more than 7 qubits. Next, compare Cost(Csyn) with two other cost functions to see how well they fit
Prob(Csyn) respectively. Cost1(Csyn) is the cost function used in [74]. Cost2(Csyn) is an alternative one based
on the probability theory, i.e., the failure rate of Csyn. pi is the error rate of the i-th noisy CNOT gate in Csyn

and n is the circuit width.

Cost(Csyn) = 1−∏
i
(1−α pi), α = 1+

2n−2−1
2n +1

.

Cost1(Csyn) = ∑
i

pi.

Cost2(Csyn) = 1−∏
i
(1− pi).

Simulate noisy CNOT circuits with a small gate count To compare different cost functions against Prob(Csyn),
consider CNOT circuits of width n ∈ {5,6,7}, with m original CNOT count. m = 2k, 2 ≤ k ≤ 7, k ∈ N. For

1https://github.com/Aerylia/pyzx/tree/rowcol/circuits/steiner

https://github.com/Aerylia/pyzx/tree/rowcol/circuits/steiner
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each combination of n and m, generate 100 random circuits. According to the topology in Figure 23, synthesize
them with NAPermRowCol. Denote the synthesized circuit as Csyn and regroup them based on their CNOT
count. For circuits of the same synthesized CNOT count, calculate Prob(Csyn), Cost(Csyn), Cost1(Csyn), and
Cost2(Csyn) for each one of them and take the average. By “small gate count”, we consider the synthesized
CNOT count bounded by 40. For brevity, we drop Csyn from each expression in the remainder of this section.
Besides, we use Prob, Cost, Cost1, and Cost2 to denote the value after taking the average for all synthesized
circuits of the same CNOT count.

In Figure 19, the comparison is conducted using two methods. In the left column, Root Mean Square Error
(RMSE) is used to measure the average difference between the error probability and each cost function. For
Cost, Cost1, and Cost2, their RMSEs with respect to Prob correspond to the vertical error bars in green, blue,
and orange. Suppose there are N synthesized CNOT circuits with a fixed gate count. For i ∈ ZN , let Ci be each
such circuit. The length of the green error bar is calculated as√

1
N

N−1

∑
i=0

(
Prob(Ci)−Cost(Ci)

)2
. (35)

RMSE serves as a goodness-of-fit assessment and evaluates how accurately each cost function approximates
Prob. It ranges between 0 and positive infinity. As the cost function moves closer to Prob, the approximation
has less error, and thus has better precision. A value of 0 (almost impossible in practice) indicates a perfect
fit to Prob. RMSE is a simple metric that provides a straightforward interpretation of a cost function’s overall
error [6].

For circuits of widths 5, 6, and 7 with different CNOT counts, Cost demonstrates a minor deviation from
Prob. Compared with Cost1 and Cost2, it approximates Prob with higher precision. As shown in the left
columns of Figures 26 and 27, on the other IBM’s backends, Cost consistently provides a much more accurate
approximation for Prob than the other cost functions. These simulation results show that Cost is an accountable
approximation for Prob, despite varied topology and error distribution across different backends.

In the right column of Figure 19, the maximum distance between Prob and each cost function is used as an
alternative metric for the goodness-of-fit assessment. Suppose there are N synthesized CNOT circuits with gate
count M. For i ∈ ZN , let Ci be each such circuit. The maximum distance between Prob and Cost is defined as

d(Prob,Cost) = max
i∈ZN
|Prob(Ci)−Cost(Ci)|. (36)

Since d(Prob,Cost) has a wide range, we use a logarithmic scale for the y-axis to plot all data compactly.
For circuits of widths n ∈ {5,6,7}, Cost fits Prob up to 10−3, much closer than Cost1 and Cost2. Similarly, in
the right columns of Figures 26 and 27, Cost is a tighter approximation for Prob than Cost1 and Cost2. It fits
Prob up to 10−1 for all synthesized CNOT counts.

There is another interesting pattern between different cost functions. In the right column of Figure 19,
when the synthesized CNOT count increases, d(Prob,Cost) increases, so does d(Prob,Cost1). However,
d(Prob,Cost2) increases when the synthesized CNOT count is lower than 20. Then it decreases when the
synthesized CNOT counts get larger. This is because when the CNOT count is low, the accumulated CNOT
error rate is also low. As the CNOT count increases, the growth of Cost2 surpasses the growth of Prob, so
their distance is reduced. To see if Cost2 will outperform Cost, we use synthesized CNOT circuits with higher
CNOT counts to investigate whether the distance between Prob and Cost2 will eventually decrease to 0.

Simulate noisy CNOT circuits with a larger gate count To randomly generate synthesized CNOT circuits,
our previous method has its limitations. The synthesized CNOT count does not scale well with the number of
input circuits to NAPermRowCol. For example, if we use circuits with 128 original CNOT count as input, no
synthesized circuit has a CNOT count of more than 44. To this end, we use a topology-based method to generate
a synthesized CNOT circuit with a larger gate count. By “larger gate count”, we consider the synthesized circuit
whose gate count is bounded by 70.
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Figure 19: On IBM’s fake Nairobi backend, compare the three cost functions against the error probability of a synthesized
CNOT circuit. pi is the error rate of a noisy CNOT gate, n is the circuit width, α = 1+ 2n−2−1

2n+1 . In the left column, figures
(a), (c), and (e) report results about the synthesized CNOT circuits of widths 5, 6, and 7 respectively. In each figure, for
circuits of the same synthesized CNOT count, a y-value corresponds to the average of the error probability or the average
of a cost function. The length of an error bar measures the average difference between the error probability and each cost
function. The longer error bar, the worse the approximation. In the right column, we compare the maximum distance
between the error probability and each cost function. Figures (b), (d), and (f) report results about the synthesized CNOT
circuits of widths 5, 6, and 7 respectively. Since d(Prob,Cost) has a wide range, we use a logarithmic scale for the y-axis
to see all the numbers easily.
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(a) Synthesized CNOT circuits of width 5. (b) Synthesized CNOT circuits of width 6. (c) Synthesized CNOT circuits of width 7.

Figure 20: On IBM’s fake Nairobi backend, compare the three cost functions against the error probability of a synthesized
CNOT circuit with gate count ranging between 4 and 69. pi is the error rate of a noisy CNOT gate, n is the circuit width,
α = 1+ 2n−2−1

2n+1 . In each figure of the first row, for circuits of the same synthesized CNOT count, a y-value corresponds
to the average of the error probability or the average of a cost function. The length of an error bar measures the average
difference between the error probability and each cost function. The longer error bar, the worse the approximation. In the
second row, we compare the maximum distance between the error probability and each cost function. Since d(Prob,Cost)
has a wide range, we use a logarithmic scale for the y-axis to see all the numbers easily. In each column, the black dashed
line corresponds to a synthesized CNOT count of 38, 43, and 45. This denotes the point where d(Prob,Cost1) attains the
minimum value, which nearly coincides with d(Prob,Cost). The extended input dataset enhances our confidence in the
goodness of Cost as an approximation for Prob.

Let G be a hardware topology, G= (VG,EG), |VG|=N and |EG|=M. Compose a synthesized CNOT circuit
of width n with m gates by considering only the allowed CNOT operations based on G, n ≤ N. That is, the
CNOTs whose control and target correspond to two adjacent vertices in G. Since a CNOT is asymmetric with
its control and target, each edge e = (u,v) ∈ EG has an orientation. For a directed edge, let its head and tail be
the control and target of a CNOT respectively.

1. Let total = 0, C = /0, E ′G is the set of 2M directed edges of EG.

2. Randomly pick one directed edge e ∈ E ′G.

3. While total < m:

(1) Right-append C by e.
(2) total = total+1.
(3) e = e′.
(4) Randomly pick one directed edge e ∈ E ′G \{e′}.

4. Return C.

Figure 20 compare the goodness-of-fit of each cost function for the error probability of larger synthesized
CNOT circuits. In the first row, for circuits of the same synthesized CNOT count, each error bar measures the
average difference between the error probability and each cost function. For all circuit widths, Cost1 intersects
with Prob, before which the difference between Prob and Cost1 decreases. This means Cost1 provides a better
fit for Prob when the synthesized CNOT count goes beyond a certain point. Such a changing point is annotated
by the black dashed line in each column. It corresponds to a synthesized CNOT count of 38, 43, and 45. After
the intersection, the difference between Prob and Cost1 increases, indicating a worse fit for Prob when the
synthesized CNOT count increases. In comparison, the difference between Prob and Cost remains small for all
synthesized CNOT count.
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In the second row, we compare the maximum distance between the error probability and every cost function.
In each column, the black dashed line from the first row denotes the point where d(Prob,Cost1) attains the
minimum value (between 10−3 and 10−2), which nearly coincides with d(Prob,Cost). This implies that for
certain synthesized CNOT count, Cost1 provides a good approximation for Prob. However, in general, Cost
gives a more accurate approximation for circuits of different synthesized CNOT counts.

To summarize, on different IBM’s backends and for CNOT circuits of different sizes, Cost fits Prob signifi-
cantly better than the other cost functions. Moreover, it circumvents the computation complexity of calculating
the average gate fidelity and shows remarkable scalability. Therefore, we use it to design the noise-aware CNOT
synthesis algorithm NAPermRowCol and evaluate the performance of our error mitigation strategy.

5.2 Compare Different CNOT Synthesis Algorithms

NAPermRowCol is inspired by the algorithm GENNS [74] and built upon the algorithm PermRowCol [26].
It reduces a noise-aware CNOT routing algorithm to a Steiner tree problem and lowers the CNOT count by
factoring out SWAP gates after CNOT synthesis. Moreover, it uses noise-aware heuristics to make an informed
decision at each reduction step. To gauge its performance, we benchmark it against the state-of-the-art CNOT
synthesis algorithms according to the Cost metric and the synthesized CNOT count. Our comparative analysis
is carried out between NAPermRowCol, PermRowCol, ROWCOL [71], and Qiskit. Qiskit is short for “Qiskit
transpilation at optimization level 3”. It implements the SWAP-based heuristic algorithm SABRE [41]. These
algorithms take a logical CNOT circuit C and an undirected edge-weighted connected graph G = (VG,EG,ωG)
as inputs and return a synthesized circuit with allowed CNOT operations. Although it would be ideal to include
GENNS in our comparison, it fails upon an invalid initial qubit map. Consider an arbitrary logical qubit map to
a connected subgraph of G. Since every other algorithm works with such a map, the incompatibility of GENNS
makes it unsuitable for a fair comparison.

In this section, we analyze the benchmark results using IBM’s fake Nairobi backend. In Appendices E.2
and E.3, we report results on IBM’s fake Guadalupe and Cairo backends. For the Nairobi backend, the input
dataset consists of CNOT circuits of width n ∈ {5,7}. For Guadalupe and Cairo backends, the input dataset
is extended with CNOT circuits of width 16. Let m be the original CNOT count of the input circuit. For all
backends and circuit widths, m = 2k, 2≤ k≤ 10. For each combination (n,m), randomly generate 100 circuits.
All other experimental conditions remain the same across different backends.

To find a good initial qubit map for each original CNOT circuit C, we start by considering the one selected
by Qiskit. It randomly generates a map for all logical qubits and synthesizes C with SWAP gates. After
repeating this several times, it finds the best map Φ and returns the synthesized circuit. If Φ maps logical
qubits to connected quantum registers, we use it as the initial qubit map for ROWCOL, PermRowCol, and
NAPermRowCol. Otherwise, these algorithms fail as they assume a connected topology. Alternatively, select
a subset of connected vertices, VG′ ⊂ VG, |VG′ | = n. Let G′ = (VG′ ,EG′ ,ωG′) be the induced subgraph of G.
ωG′(e) = ωG(e), e ∈ EG′ . Assign each logical qubit to a vertex in VG′ in increasing order. That is, if i < j,
Φ(i) < Φ( j). For example, to map a 5-qubit logical circuit to a connected subgraph of Figure 23, let VG′ =
{0,1,2,3,4}. Then the naive map Φ is described by Table 1.

Logical qubit i 0 1 2 3 4
Vertex j 0 1 2 3 4

Table 1: For clarity, we use a green label to denote a logical qubit and a blue label to denote a physical qubit. The naive
qubit map can be expressed as Φ = [0,1,2,3,4].

After applying Φ to the logical qubits of C, input it alongside G′ into the benchmarked algorithms. For
each combination (n,m), let Ci be the synthesized circuits returned by NAPermRowCol, 0 ≤ i ≤ 99. Find
the synthesized gate count of Ci and Cost(Ci), then take the average for both of them. Repeat the same
procedure for algorithms PermRowCol and ROWCOL. Since Qiskit handles the initial qubit mapping and
returns a synthesized circuit Ci based on G, for each combination (n,m), we can also average its synthesized
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gate count and Cost(Ci), for 0 ≤ i ≤ 99. To optimize the benchmark’s runtime, we use the Python package
Ray [42] to parallelize the execution of these four synthesis algorithms.

In Appendix C, Tables 4 and 5 demonstrate benchmark results of synthesizing 5- and 7-qubit CNOT circuits
on IBM’s fake Nairobi backend. According to the Cost metric and the synthesized CNOT count, NAPermRow-
Col outperforms PermRowCol, ROWCOL, and Qiskit for all input circuits of different CNOT counts. This is
also supported by the benchmark results on IBM’s other backends. For more details, we encourage readers to
check out Tables 6 and 7 and Figures 28 and 29 for CNOT synthesis on the fake Guadalupe backend, as well as
Tables 8 and 9 and Figures 31 and 32 for CNOT synthesis on the fake Cairo backend. For the Nairobi backend,
we discuss these benchmark results from two perspectives.

Compare the scalability of different synthesis algorithms Let m be the original CNOT count. In Fig-
ures 21a and 21c, when m is small, the performance of each algorithm is barely distinguishable. When m
increases, the synthesized CNOT count and the Cost of each algorithm increase. Among them, Qiskit shows
the worst scalability. In Figure 21a,

• When m≤ 8, for each algorithm, its synthesized CNOT count is bounded by 12, and its Cost is bounded
by 0.12.

• When m ≥ 16, Qiskit’s synthesized CNOT count grows exponentially, while those of NAPermRowCol,
PermRowCol, and ROWCOL remain nearly unchanged. They are bounded by 13, 14, and 20 respectively.

• When m≥ 256, the synthesized CNOT count of these three algorithms is about 100 times fewer than that
of Qiskit.

Similarly, in Figure 21c,

• When m ≥ 16, Qiskit’s Cost explodes, while those of NAPermRowCol, PermRowCol, ROWCOL fluc-
tuate around 0.11, 0.13, and 0.17 respectively.

• When m ≥ 256, Qiskit’s Cost saturates the maximum possible cost and reaches 1. In comparison, the
Cost of NAPermRowCol, PermRowCol, and ROWCOL remains quite low. It is bounded by 0.12, 0.14,
and 0.18 respectively, which is more than 5 times cheaper than Qiskit.

In summary, NAPermRowCol, PermRowCol, and ROWCOL show impressive and comparable scalability
when synthesizing a large 5-qubit CNOT circuit.

Compare the relative performance of NAPermRowCol, PermRowCol, and ROWCOL Compared to Fig-
ures 21a and 21c, Figures 21b and 21d get rid of the data related to Qiskit so that the remaining ones are
distributed in a more compact area. They serve as the zoomed-in versions which allow us to compare the
performance of NAPermRowCol, PermRowCol, and ROWCOL more closely. Compared to PermRowCol,
NAPermRowCol reduces the synthesized CNOT count by about 16%, and it is about 13% cheaper. Compared
to ROWCOL, it reduces the synthesized CNOT count by about 42%, and it is about 48% cheaper. In summary,
both the Cost metric and the synthesized CNOT count show that NAPermRowCol outperforms PermRowCol
and ROWCOL.

These results also confirm the effectiveness of the noise-aware heuristics introduced in Section 4.2. In a re-
duction step, NAPermRowCol may take a detour to avoid expensive edges. Under both metrics, NAPermRow-
Col consistently beats PermRowCol. This means our greedy approach of selecting the cheapest path at each
reduction step results in an additional improvement to optimize the overall synthesis results.

Figure 22 demonstrate benchmark results of synthesizing a 7-qubit CNOT circuit on IBM’s fake Nairobi
backend. As in Figure 21, Qiskit shows the worst scalability when the original CNOT count increases. Un-
der both metrics, NAPermRowCol outperforms PermRowCol, ROWCOL, and Qiskit for all input circuits of
different CNOT counts. In addition, it shows that when synthesizing a wider CNOT circuit, the performance
of each algorithm declines. Compare to Figure 21b, in Figure 22b, the maximum synthesized CNOT count of
each algorithm has increased. For example, the synthesized CNOT count of NAPermRowCol is bounded by
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(a) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of the synthesized CNOT count. Qiskit has the worst
scalability when the original CNOT count grows exponentially.

(b) Compare NAPermRowCol with PermRowCol and ROWCOL
in terms of the synthesized CNOT count. This is the zoomed-in
version of the lefthand side.

(c) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of their respective costs. Qiskit has the worst scala-
bility when the original CNOT count grows exponentially.

(d) Compare NAPermRowCol with PermRowCol and ROWCOL in
terms of their respective costs. This is the zoomed-in version of the
lefthand side.

Figure 21: IBM’s fake Nairobi backend hosts 7 qubits. We benchmark with its 5-qubit connected subgraph and compare
NAPermRowCol against three state-of-the-art CNOT synthesis algorithms. For each original CNOT count, input 100 ran-
domly generated CNOT circuits to each algorithm, obtain the synthesized CNOT circuits, then average their gate count and
the circuit cost. The x-axis in each figure uses a logarithmic scale as the input gate count grows exponentially. The y-axis
of Figure 21a uses a logarithmic scale, while the ones in Figures 21b to 21d use a linear scale. Compared to Figures 21a
and 21c, Figures 21b and 21d get rid of the data related to Qiskit so that the remaining ones are distributed in a more
compact area. They serve as the zoomed-in versions which allow us to compare the performance of NAPermRowCol,
PermRowCol, and ROWCOL more closely. For all input circuits of different CNOT counts, NAPermRowCol outperforms
other algorithms in terms of the synthesized CNOT count and circuit cost. It demonstrates remarkable scalability when
the input circuit size grows exponentially.
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31, but it is bounded by 12 when synthesizing a 5-qubit CNOT circuit. Similarly, in Figure 22d, the Cost of
NAPermRowCol is bounded by 0.27, but it is bounded by 0.115 in Figure 21d.

Moreover, the advantages of NAPermRowCol over PermRowCol and ROWCOL are less obvious. Com-
pared to PermRowCol, NAPermRowCol reduces the synthesized CNOT count by about 13%, and it is about
11% cheaper. Compared to ROWCOL, it reduces the synthesized CNOT count by about 35.5%, and it is about
26% cheaper. In summary, the improvement of NAPermRowCol is suppressed when synthesizing a wider
CNOT circuit. We can draw the same conclusion based on the benchmark results on IBM’s other backends.
When the CNOT circuit has more than 15 qubits, the performance between NAPermRowCol, PermRowCol,
and ROWCOL is barely distinguishable. For more details, we encourage readers to check out Figures 30 and 33
for synthesizing 16-qubit CNOT circuits on the fake Guadalupe and Cairo backends.

Finally, we compare the performance of NAPermRowCol with Qiskit, whose routing strategy uses ancillary
qubits to connect subsets of non-adjacent qubits. In contrast, NAPermRowCol and other algorithms do not use
ancilla and thus have much better scalability. In terms of the algorithm performance, NAPermRowCol is not as
versatile as Qiskit, with a less-than-optimal strategy at each reduction step. Despite such an unfair comparison,
NAPermRowCol consistently performs much better than Qiskit on all benchmarked backends, especially for
CNOT circuits of large gate counts. This highlights the potential of NAPermRowCol and our error mitigation
strategy to route a more complicated quantum circuits on various NISQ hardware.
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(a) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of the synthesized CNOT count. Qiskit has the worst
scalability when the original CNOT count grows exponentially.

(b) Compare NAPermRowCol with PermRowCol and ROWCOL
in terms of the synthesized CNOT count. This is the zoomed-in
version of the lefthand side.

(c) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of their respective costs. Qiskit has the worst scala-
bility when the original CNOT count grows exponentially.

(d) Compare NAPermRowCol with PermRowCol and ROWCOL in
terms of their respective costs. This is the zoomed-in version of the
lefthand side.

Figure 22: IBM’s fake Nairobi backend hosts 7 qubits. We benchmark with its 7-qubit connected subgraph and compare
NAPermRowCol against three state-of-the-art CNOT synthesis algorithms. For each original CNOT count, input 100 ran-
domly generated CNOT circuits to each algorithm, obtain the synthesized CNOT circuits, then average their gate count and
the circuit cost. The x-axis in each figure uses a logarithmic scale as the input gate count grows exponentially. The y-axis
of Figure 22a uses a logarithmic scale, while the ones in Figures 22b to 22d use a linear scale. Compared to Figures 22a
and 22c, Figures 22b and 22d get rid of the data related to Qiskit so that the remaining ones are distributed in a more
compact area. They serve as the zoomed-in versions which allow us to compare the performance of NAPermRowCol,
PermRowCol, and ROWCOL more closely. For input circuits of more than 16 CNOT counts, NAPermRowCol outper-
forms other algorithms in terms of the synthesized CNOT count and circuit cost. It demonstrates remarkable scalability
when the input circuit size grows exponentially.
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A Complementary Proofs

In this section, we provide complementary proof details for statements in Sections 2.4.2 and 3.

Lemma 2.13.

Fpro(E ′) =
Tr[SE ′ ]

t2 .

Proof. According to [22, 62], the process fidelity can be expressed as

Fpro(E ′) = ∑
k
|Tr[U†Mk]/t|2. (37)

By direct computation, we rewrite Equation (37) as

Fpro(E ′) =
1
t2 ∑

k
(Tr[U†Mk])

∗Tr[U†Mk]

=
1
t2 ∑

k
Tr[UT M∗k ]Tr[U†Mk]

=
1
t2 ∑

k
Tr[(UT M∗k )⊗ (U†Mk)]

=
1
t2 Tr

[
∑
k
(UT M∗k )⊗ (U†Mk)

]
=

1
t2 Tr

[
∑
k
(U†Mk)

∗⊗ (U†Mk)
]

=
1
t2 Tr

[
∑
k

Mk
′∗⊗M′k

]
. (38)

By Lemma 2.7, since the action of E ′ is described by {M′k; M′k =U†Mk}, ∑k(M∗k ⊗Mk) = SE ′ . Hence,

Fpro(E ′) =
Tr[SE ′ ]

t2 .

Lemma 3.1. Let Eq be an n-qubit channel that is vertically composed of two noisy channels E0 and E1, with
input dimension d0 and d1, error probability p0 and p1. Eq = E0⊗E1, dq = d0d1 = 2n. dq is the input dimension
of Eq. Then

Fave(Eq) = 1− p0− p1 + p0 p1 +
(1−d1)p0 +(1−d0)p1 +(d0 +d1)p0 p1

d0d1 +1
.
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Proof. Applying Lemma 2.11 with Equations (19) and (20), we have

Favg(Eq) = Favg(E0⊗E1) =
Tr[SE0⊗E1 ]

(d0d1)2 ×
d0d1

d0d1 +1
+

1
d0d1 +1

=
Tr[SE0 ]

d2
0

Tr[SE1 ]

d2
1
× d0d1

d0d1 +1
+

1
d0d1 +1

=

(
1− d0 +1

d0
p0

)(
1− d1 +1

d1
p1

)
d0d1

d0d1 +1
+

1
d0d1 +1

= 1−

(
d0 +1

d0
p0 +

d1 +1
d1

p1

)
d0d1

d0d1 +1
+

(d0 +1)(d1 +1)
d0d1 +1

p0 p1

= 1−

(
d0d1 +d1 +1−1

d0d1 +1
p0 +

d0d1 +d0 +1−1
d0d1 +1

p1

)
+

d0d1 +d0 +d1 +1
d0d1 +1

p0 p1

= 1− p0−
d1−1

d0d1 +1
p0− p1−

d0−1
d0d1 +1

p1 + p0 p1 +
(d0 +d1)p0 p1

d0d1 +1

= 1− p0− p1 + p0 p1 +
(1−d1)p0 +(1−d0)p1 +(d0 +d1)p0 p1

d0d1 +1

Lemma 3.4. Let t = 2n be the input dimension of Ec. For k ∈ Z2, dk = t is the input dimension of an error
channel Ek with error probability pk. If Ec = E1 ◦E0 and Ak = I−SEk ,

(t +1)2 p0 p1 ≤ Tr[A1A0]≤ 2(t +1)2 p0 p1.

Proof. According to Corollary 2.1, for k ∈ Z2,

Ak = I−SEk = I− ∑
Ei∈Bn

Pk
i Sk

Ei
. (39)

Let Ek
0 be the t2× t2 identity matrix I with probability Pk

0 . Equation (39) can be expressed as

Ak = I−Pk
0 Ek

0− ∑
Ei∈Bn\{Ek

0}
Pk

i SEi = (1−Pk
0 )I− ∑

Ei∈Bn\{I}
Pk

i SEi . (40)

It follows that

A1A0 =
((

1−P1
0
)
I− ∑

Ei∈Bn\{I}
P1

i SEi

)((
(1−P0

0
)
I− ∑

E j∈Bn\{I}
P0

j SE j

)
=
(
1−P1

0
)(

1−P0
0
)
I−
(
1−P1

0
)

∑
E j∈Bn\{I}

P0
j SE j − (1−P0

0
)

∑
Ei∈Bn\{I}

P1
i SEi + ∑

Ei∈Bn\{I}
E j∈Bn\{I}

(
P1

i SEi

)(
P0

j SE j

)
.

(41)
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By linearity and Lemma 2.9,

Tr[A1A0] = Tr

[(
1−P1

0
)(

1−P0
0
)
I−
(
1−P1

0
)

∑
E j∈Bn\{I}

P0
j SE j − (1−P0

0
)

∑
Ei∈Bn\{I}

P1
i SEi

+ ∑
Ei∈Bn\{I}
E j∈Bn\{I}

(
P1

i SEi

)(
P0

j SE j

)]

= Tr

[(
1−P1

0
)(

1−P0
0
)
I

]
−Tr

[(
1−P1

0
)

∑
E j∈Bn\{I}

P0
j SE j

]
−Tr

[
(1−P0

0
)

∑
Ei∈Bn\{I}

P1
i SEi

]

+Tr

[
∑

Ei∈Bn\{I}
E j∈Bn\{I}

(
P1

i SEi

)(
P0

j SE j

)]
.

=
(
1−P1

0
)(

1−P0
0
)
t2−

(
1−P1

0
)

∑
E j∈Bn\{I}

P0
j Tr[SE j ]−

(
1−P0

0
)

∑
Ei∈Bn\{I}

P1
i Tr[SEi ]

+ ∑
Ei∈Bn\{I}
E j∈Bn\{I}

P1
i P0

j Tr[SEiSE j ].

=
(
1−P1

0
)(

1−P0
0
)
t2 + ∑

Ei∈Bn\{I}
E j∈Bn\{I}

P1
i P0

j Tr[SEiSE j ]. (42)

For 1≤ i, j ≤ 4n−1, since Ei and E j are unitary, by Lemma 2.6,

SEiSE j = (E∗i ⊗Ei)(E∗j ⊗E j) = (E∗i E∗j )⊗ (EiE j). (43)

Since
Tr[(E∗i E∗j )⊗ (EiE j)] = Tr[E∗i E∗j ]Tr[EiE j] =

(
Tr[E jEi]

)∗Tr[EiE j],

combined with Equations (42) and (43) and lemma 2.8, we have

Tr[A1A0] =
(
1−P1

0
)(

1−P0
0
)
t2 + ∑

Ei∈Bn\{I}
E j∈Bn\{I}

P1
i P0

j
(
Tr[E jEi]

)∗Tr[EiE j].

=
(
1−P1

0
)(

1−P0
0
)
t2 +

4n−1

∑
i=1

P1
i P0

i t2.

= t2
((

1−P1
0
)(

1−P0
0
)
+

4n−1

∑
i=1

P1
i P0

i

)
. (44)

By Equation (19) and lemma 2.9,

t2
(

1− t +1
t

pk

)
= Tr

[
∑

Ei∈Bn

Pk
i SEk

i

]
= Pk

0 Tr[SI]+
4n−1

∑
i=1

Pk
i Tr[SEk

i
] = t2Pk

0 .

It follows that

Pk
0 = 1− t +1

t
pk,

4n−1

∑
i=1

Pk
i = 1−Pk

0 =
t +1

t
pk. (45)

Define a function f (P0
i ,P

1
i ) with domain D as follows.

f (P0
i ,P

1
i ) =

4n−1

∑
i=1

P1
i P0

i , D =

{
Pk

i ;
4n−1

∑
i=1

Pk
i =

t +1
t

pk, k ∈ Z2, Pk
i ≥ 0, 1≤ i≤ 4n−1

}
.
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By Equation (45), Equation (44) can be simplified as

Tr[A1A0] = t2

(
(t +1)2

t2 p0 p1 +
4n−1

∑
i=1

P1
i P0

i

)
= (t +1)2 p0 p1 + t2 f (P0

i ,P
1
i ). (46)

To bound Equation (46), our problem is reduced to identifying the maximum and minimum values of f ,
fmax and fmin, on D. By the extreme value theorem, fmax and fmin are either the extremum points of f or located
on the boundary of D. Using the Lagrange Multiplier method [57], the extremum point is reached when all Pk

i
have the same values. That is, for all 1≤ i≤ 4n−1

P0
i =

(t +1)p0

t(t2−1)
, P1

i =
(t +1)p1

t(t2−1)
.

Since t2 = 4n,

fex =
4n−1

∑
i=1

(
(t +1)p0

t(t2−1)

)(
(t +1)p1

t(t2−1)

)
=

(t +1)2

(t2−1)t2 p0 p1. (47)

For k ∈ Z2, 0 ≤ Pk
i ≤ t+1

t pk. The boundary of D is reached when for all 1 ≤ i ≤ t2− 1, P1
i P0

i = 0. Thus
f = 0. Or for some 1≤ i≤ t2−1, Pk

i = t+1
t pk. Thus

f =
t2−1

∑
i=1

P1
i P0

i =

(
t +1

t
p0

)(
t +1

t
p1

)
+0 =

(t +1)2

t2 p0 p1

Therefore,

fmin = 0, fmax =
(t +1)2

t2 p0 p1. (48)

Combining Equations (46) and (48), we have

(t +1)2 p0 p1 ≤ Tr[A1A0]≤ 2(t +1)2 p0 p1.

B Package Version and Hardware Specifics

To generate simulation and benchmark results, we utilize two distinct hardware environments and various
Python packages. The important ones are documented here. For other packages, please refer to the GitHub
repository2. Qiskit Aer is installed from the source code3.

Python packages Version
Qiskit 0.45.2
Qiskit Aer 0.13.2
pyzx 0.7.3
System information Hardware Specifics
Python 3.8.17
Operating System Ubuntu 22.04.2 LTS
CPU AMD EPYC 7763 64-Core Processor @ 2.45GHz
Memory 1.23 TB

Table 2: The simulation results reported in Section 5.1 and appendix D are generated under these specifications.

2https://github.com/Minyoung-Kim1110/NoiseAwareSynthesis
3https://qiskit.org/ecosystem/aer/getting_started.html

https://github.com/Minyoung-Kim1110/NoiseAwareSynthesis
https://qiskit.org/ecosystem/aer/getting_started.html
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Python packages Version
Qiskit 0.44.3
Qiskit Terra 0.25.3
Qiskit Aer 0.13.0
System information Hardware Specifics
Python 3.8.18
Operating System Window 10 Education
CPU AMD Ryzen Threadripper 3970X 32-core @3.69 GHz
Memory 256 GB

Table 3: The benchmark results reported in Section 5.2 and appendix E are generated under these specifications.

Note that here, "pyzx" is not a package. It is a module from the "rowcol" branch in the GitHub repo4.

C Backends for Simulation and Benchmarking

We use the empirical data from IBM’s fake Nairobi, Guadalupe, and Cairo backends to compare different cost
functions and the performance of different CNOT synthesis algorithms.

C.1 IBM’s Fake Nairobi Backend

0 1 2

5 6

3

4

(a) Each vertex corresponds to a physical qubit. Each edge represents a CNOT gate that
can be performed on the qubits corresponding to its endpoints.

Edge Edge Weight
(0, 1) 0.00777
(1, 2) 0.00607
(1, 3) 0.00792
(3, 5) 0.01016
(4, 5) 0.00619
(5, 6) 0.00918

(b) For e = (u,v) ∈ EG, ωG(e) is the error
rate of coupling physical qubits u and v.

Figure 23: G = (VG,EG,ωG) is the connectivity graph of IBM’s fake Nairobi backend. It is an undirected edge-weighted
connected graph. |VG|= 7, ωG : EG→{x ∈ R; 0≤ x < 1}.
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C.2 IBM’s Fake Guadalupe Backend

C.3 IBM’s Fake Cairo Backend

0 1 4 10 12

3 5 8 11 14

2 13

6

7

9

15 21 23

16 19 22 25

24

17

18

20

26

(a) Each vertex corresponds to a physical qubit. Each edge represents a CNOT gate that can be performed on the qubits corresponding
to its endpoints.

Edge Edge Weight Edge Edge Weight
(0, 1) 0.025728 (12, 15) 0.008980
(1, 2) 0.006662 (13, 14) 0.004904
(1, 4) 0.011427 (14, 16) 0.005036
(2, 3) 0.011890 (15, 18) 0.005864
(3, 5) 0.005375 (16, 19) 0.007042
(4, 7) 0.016432 (17, 18) 0.009230
(5, 8) 0.004620 (18, 21) 0.005924
(6, 7) 0.014319 (19, 20) 0.007014
(7, 10) 0.022012 (19, 22) 0.005040
(8, 9) 0.006167 (21, 23) 0.008903
(8, 11) 0.053568 (22, 25) 0.023629
(10, 12) 0.006628 (23, 24) 0.003967
(11, 14) 0.013671 (24, 25) 0.023295
(12, 13) 0.014007 (25, 26) 0.028715

(b) For e = (u,v) ∈ EG, ωG(e) is the error rate of coupling physical qubits u and v.

Figure 25: G = (VG,EG,ωG) is the connectivity graph of IBM’s fake Cairo backend. It is an undirected edge-weighted
connected graph. |VG|= 16, ωG : EG→{x ∈ R; 0≤ x < 1}.

4https://github.com/Aerylia/pyzx

https://github.com/Aerylia/pyzx
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D Compare Different Cost Functions on IBM’s Fake Backends

Figure 26: On IBM’s fake Guadalupe backend, compare the three cost functions against the error probability of a synthe-
sized CNOT circuit. pi is the error rate of a noisy CNOT gate, n is the circuit width, α = 1+ 2n−2−1

2n+1 . In the left column,
figures (a), (c), and (e) report results about the synthesized CNOT circuits of widths 5, 6, and 7 respectively. In each
figure, for circuits of the same synthesized CNOT count, a y-value corresponds to the average of the error probability or
the average of a cost function. The length of an error bar measures the average difference between the error probability
and each cost function. The higher the value, the worse the approximation. In the right column, we compare the maximum
distance between the error probability and each cost function. Figures (b), (d), and (f) report results about the synthesized
CNOT circuits of widths 5, 6, and 7 respectively. Since max|Prob−Cost| has a wide range, we use a logarithmic scale
for the y-axis to see all the numbers easily.
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Figure 27: On IBM’s fake Cairo backend, compare the three cost functions against the error probability of a synthesized
CNOT circuit. pi is the error rate of a noisy CNOT gate, n is the circuit width, α = 1+ 2n−2−1

2n+1 . In the left column, figures
(a), (c), and (e) report results about the synthesized CNOT circuits of widths 5, 6, and 7 respectively. In each figure, for
circuits of the same synthesized CNOT count, a y-value corresponds to the average of the error probability or the average
of a cost function. The length of an error bar measures the average difference between the error probability and each cost
function. The higher the value, the worse the approximation. In the right column, we compare the maximum distance
between the error probability and each cost function. Figures (b), (d), and (f) report results about the synthesized CNOT
circuits of widths 5, 6, and 7 respectively. Since max|Prob−Cost| has a wide range, we use a logarithmic scale for the
y-axis to see all the numbers easily.
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E Compare Different CNOT Synthesis Algorithms on IBM’s Fake Backends

E.1 Benchmark on IBM’s Fake Nairobi Backend

Circuit Original
Qiskit ROWCOL PermRowCol NAPermRowCol

Width CNOT Count

5

4 4.09 (5.68%) 4.51 (16.54%) 3.99 (3.10%) 3.87
8 11.22 (23.43%) 11.97 (31.68%) 10.22 (12.43%) 9.09
16 25.28 (117.93%) 17.02 (46.72%) 13.04 (12.41%) 11.60
32 55.34 (326.35%) 17.83 (37.37%) 14.11 (8.71%) 12.98
64 120.14 (896.19%) 19.14 (58.71%) 14.14 (17.25%) 12.06
128 246.41 (1885.58%) 18.32 (47.62%) 13.76 (10.88%) 12.41
256 500.59 (4013.31%) 18.40 (51.19%) 13.93 (14.46%) 12.17
512 1001.44 (8021.98%) 18.89 (53.20%) 13.80 (11.92%) 12.33

1024 2017.34 (16116.56%) 18.75 (50.72%) 13.62 (9.49%) 12.44

7

4 4.53 (-0.88%) 4.77 (4.38%) 4.70 (2.84%) 4.57
8 13.05 (4.15%) 16.24 (29.61%) 13.67 (9.10%) 12.53
16 33.47 (35.01%) 32.01 (29.12%) 26.75 (7.91%) 24.79
32 79.96 (165.03%) 39.35 (30.43%) 33.64 (11.50%) 30.17
64 166.18 (433.65%) 41.55 (33.43%) 35.48 (13.94%) 31.14
128 347.20 (1011.04%) 41.32 (32.22%) 34.68 (10.98%) 31.25
256 706.32 (2199.97%) 41.72 (35.85%) 34.14 (11.17%) 30.71
512 1431.80 (4541.17%) 41.75 (35.33%) 34.57 (12.06%) 30.85

1024 2920.34 (9170.92%) 41.03 (30.25%) 35.12 (11.49%) 31.50

Table 4: IBM’s fake Nairobi backend hosts 7 qubits. We benchmark with its 5- and 7-qubit connected subgraph and
compare NAPermRowCol with other state-of-the-art CNOT synthesis algorithms in terms of the synthesized CNOT count.
Qiskit is short for “Qiskit transpilation at optimization level 3”. It implements the SWAP-based heuristic algorithm
SABRE. For each row (i.e., the original CNOT count), input 100 randomly generated CNOT circuits to each algorithm
listed in the table header, then calculate the average synthesized CNOT count. The value in each bracket shows the
percentage difference compared to the results of NAPermRowCol.
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Circuit Original
Qiskit ROWCOL PermRowCol NAPermRowCol

Width CNOT Count

5

4 0.0407 (8.21%) 0.0436 (15.93%) 0.0388 (3.29%) 0.0376
8 0.1075 (25.72%) 0.1123 (31.34%) 0.0968 (13.17%) 0.0855
16 0.2273 (109.72%) 0.1574 (45.18%) 0.1226 (13.12%) 0.1084
32 0.4301 (258.69%) 0.1640 (36.78%) 0.1316 (9.72%) 0.1199
64 0.7079 (527.59%) 0.1743 (54.48%) 0.1328 (17.76%) 0.1128
128 0.9189 (696.34%) 0.1678 (45.42%) 0.1294 (12.15%) 0.1154
256 0.9940 (778.12%) 0.1694 (49.64%) 0.1306 (15.41%) 0.1132
512 1.0000 (780.36%) 0.1721 (51.48%) 0.1277 (12.45%) 0.1136

1024 1.0000 (770.07%) 0.1729 (50.48%) 0.1267 (10.28%) 0.1149

7

4 0.0437 (-0.23%) 0.0461 (5.45%) 0.0455 (3.95%) 0.0438
8 0.1222 (4.08%) 0.1516 (29.13%) 0.1289 (9.79%) 0.1174
16 0.2858 (30.77%) 0.2778 (27.11%) 0.2381 (8.92%) 0.2186
32 0.5576 (114.27%) 0.3309 (27.16%) 0.2898 (11.37%) 0.2602
64 0.8167 (205.02%) 0.3446 (28.68%) 0.3035 (13.34%) 0.2678
128 0.9711 (261.34%) 0.3421 (27.31%) 0.2987 (11.16%) 0.2687
256 0.9993 (277.49%) 0.3467 (30.98%) 0.2955 (11.62%) 0.2647
512 1.0000 (277.93%) 0.3467 (31.02%) 0.2975 (12.42%) 0.2646

1024 1.0000 (270.19%) 0.3418 (26.53%) 0.3006 (11.27%) 0.2701

Table 5: IBM’s fake Nairobi backend hosts 7 qubits. We benchmark with its 5- and 7-qubit connected subgraph and
compare NAPermRowCol with other state-of-the-art CNOT synthesis algorithms in terms of the Cost metric. For each
row (i.e., the original CNOT count), input 100 randomly generated CNOT circuits to each algorithm listed in the table
header, then calculate the average Cost. The value in each bracket shows the percentage difference compared to the results
of NAPermRowCol.
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E.2 Benchmark on IBM’s Fake Guadalupe Backend

Circuit Original
Qiskit ROWCOL PermRowCol NAPermRowCol

Width CNOT Count

5

4 4.07 (3.04%) 4.34 (9.87%) 3.92 (-0.76%) 3.95
8 11.08 (23.11%) 12.03 (33.67%) 10.19 (13.22%) 9.00
16 25.43 (116.43%) 16.94 (44.17%) 13.18 (12.17%) 11.75
32 56.35 (334.13%) 18.37 (41.53%) 14.23 (9.63%) 12.98
64 121.11 (893.52%) 18.93 (55.29%) 13.91 (14.11%) 12.19
128 247.08 (1913.69%) 18.15 (47.92%) 13.69 (11.57%) 12.27
256 504.43 (3932.21%) 18.50 (47.88%) 14.03 (12.15%) 12.51
512 1005.74 (8198.18%) 18.75 (54.70%) 13.76 (13.53%) 12.12

1024 2023.69 (16063.66%) 18.63 (48.80%) 13.89 (10.94%) 12.52

7

4 3.85 (4.90%) 3.86 (5.18%) 3.79 (3.27%) 3.67
8 11.96 (0.76%) 14.98 (26.20%) 12.56 (5.81%) 11.87
16 31.29 (29.46%) 31.01 (28.30%) 26.63 (10.18%) 24.17
32 79.05 (147.26%) 41.06 (28.43%) 35.99 (12.57%) 31.97
64 168.18 (426.88%) 43.09 (34.99%) 35.87 (12.37%) 31.92
128 354.01 (1003.52%) 43.33 (35.07%) 35.35 (10.19%) 32.08
256 726.68 (2161.69%) 42.16 (31.22%) 35.00 (8.93%) 32.13
512 1483.26 (4462.47%) 42.65 (31.19%) 34.56 (6.31%) 32.51

1024 3023.32 (9202.52%) 42.69 (31.35%) 35.86 (10.34%) 32.50

16

4 3.98 (1.02%) 5.61 (42.39%) 3.94 (0.00%) 3.94
8 8.90 (-9.28%) 11.95 (21.81%) 9.24 (-5.81%) 9.81
16 33.17 (-36.61%) 70.54 (34.80%) 57.85 (10.55%) 52.33
32 98.06 (-27.84%) 170.99 (25.82%) 146.18 (7.56%) 135.90
64 252.75 (13.75%) 247.43 (11.35%) 228.18 (2.69%) 222.20
128 577.35 (134.48%) 274.54 (11.50%) 258.17 (4.85%) 246.23
256 1261.06 (408.53%) 275.65 (11.16%) 260.65 (5.11%) 247.98
512 2644.47 (964.69%) 274.35 (10.46%) 262.67 (5.75%) 248.38

1024 5465.55 (2117.08%) 274.42 (11.32%) 262.28 (6.39%) 246.52

Table 6: IBM’s fake Guadalupe backend hosts 16 qubits. We benchmark with its 5-, 7-, and 16-qubit connected subgraph
and compare NAPermRowCol with other state-of-the-art CNOT synthesis algorithms in terms of the synthesized CNOT
count. Qiskit is short for “Qiskit transpilation at optimization level 3”. It implements the SWAP-based heuristic algorithm
SABRE. For each row (i.e., the original CNOT count), input 100 randomly generated CNOT circuits to each algorithm
listed in the table header, then calculate the average synthesized CNOT count. The value in each bracket shows the
percentage difference compared to the results of NAPermRowCol.
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Circuit Original
Qiskit ROWCOL PermRowCol NAPermRowCol

Width CNOT Count

5

4 0.0546 (6.56%) 0.0567 (10.59%) 0.0513 (0.06%) 0.0512
8 0.1379 (30.06%) 0.1425 (34.41%) 0.1231 (16.06%) 0.1060
16 0.2876 (113.88%) 0.1961 (45.82%) 0.1564 (16.26%) 0.1345
32 0.5378 (255.14%) 0.2163 (42.82%) 0.1718 (13.46%) 0.1514
64 0.7987 (467.07%) 0.2175 (54.45%) 0.1640 (16.43%) 0.1408
128 0.9579 (581.91%) 0.2081 (48.15%) 0.1600 (13.92%) 0.1405
256 0.9985 (586.23%) 0.2145 (47.43%) 0.1685 (15.83%) 0.1455
512 1.0000 (622.77%) 0.2148 (55.25%) 0.1601 (15.71%) 0.1384

1024 1.0000 (592.21%) 0.2152 (48.94%) 0.1645 (13.86%) 0.1445

7

4 0.0520 (5.94%) 0.0514 (4.81%) 0.0506 (3.25%) 0.0491
8 0.1518 (4.33%) 0.1837 (26.24%) 0.1555 (6.89%) 0.1455
16 0.3474 (28.99%) 0.3403 (26.35%) 0.3000 (11.40%) 0.2693
32 0.6571 (92.43%) 0.4266 (24.92%) 0.3846 (12.63%) 0.3415
64 0.8974 (163.33%) 0.4428 (29.93%) 0.3869 (13.54%) 0.3408
128 0.9911 (191.90%) 0.4384 (29.12%) 0.3782 (11.38%) 0.3395
256 0.9999 (198.17%) 0.4291 (27.95%) 0.3734 (11.36%) 0.3354
512 1.0000 (195.00%) 0.4307 (27.05%) 0.3661 (8.00%) 0.3390

1024 1.0000 (194.05%) 0.4357 (28.11%) 0.3808 (11.97%) 0.3401

16

4 0.0515 (0.96%) 0.0685 (34.22%) 0.0511 (0.00%) 0.0511
8 0.1140 (-6.28%) 0.1435 (17.96%) 0.1182 (-2.83%) 0.1216
16 0.3663 (-25.21%) 0.6028 (23.07%) 0.5273 (7.64%) 0.4898
32 0.7394 (-11.03%) 0.8983 (8.09%) 0.8601 (3.49%) 0.8310
64 0.9689 (2.28%) 0.9667 (2.05%) 0.9560 (0.91%) 0.9473
128 0.9996 (3.82%) 0.9775 (1.52%) 0.9720 (0.95%) 0.9629
256 1.0000 (3.84%) 0.9780 (1.56%) 0.9726 (0.99%) 0.9630
512 1.0000 (3.71%) 0.9773 (1.36%) 0.9736 (0.98%) 0.9642

1024 1.0000 (3.77%) 0.9776 (1.44%) 0.9734 (1.01%) 0.9636

Table 7: IBM’s fake Guadalupe backend hosts 16 qubits. We benchmark with its 5-, 7-, and 16-qubit connected subgraph
and compare NAPermRowCol with other state-of-the-art CNOT synthesis algorithms in terms of the Cost metric. For each
row (i.e., the original CNOT count), input 100 randomly generated CNOT circuits to each algorithm listed in the table
header, then calculate the average synthesized CNOT count. The value in each bracket shows the percentage difference
compared to the results of NAPermRowCol.
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(a) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of the synthesized CNOT count. Qiskit has the worst
scalability when the original CNOT count grows exponentially.

(b) Compare NAPermRowCol with PermRowCol and ROWCOL
in terms of the synthesized CNOT count. This is the zoomed-in
version of the lefthand side.

(c) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of their respective costs. Qiskit has the worst scala-
bility when the original CNOT count grows exponentially.

(d) Compare NAPermRowCol with PermRowCol and ROWCOL in
terms of their respective costs. This is the zoomed-in version of the
lefthand side.

Figure 29: IBM’s fake Guadalupe backend hosts 16 qubits. We benchmark with its 7-qubit connected subgraph and
compare NAPermRowCol against three state-of-the-art CNOT synthesis algorithms. For each original CNOT count,
input 100 randomly generated CNOT circuits to each algorithm, obtain the synthesized CNOT circuits, then average
their gate count and the circuit cost. The x-axis in each figure uses a logarithmic scale as the input gate count grows
exponentially. The y-axis of Figure 29a uses a logarithmic scale, while the one in Figures 29b to 29d uses a linear
scale. Compared to Figures 29a and 29c, Figures 29b and 29d get rid of the data related to Qiskit so that the remaining
ones are distributed in a more compact area. They serve as the zoomed-in versions which allow us to compare the
performance of NAPermRowCol, PermRowCol, and ROWCOL more closely. For input circuits of more than 16 CNOT
counts, NAPermRowCol outperforms other algorithms in terms of the synthesized CNOT count and circuit cost. It
demonstrates remarkable scalability when the input circuit size grows exponentially.



60 Improving the Fidelity of CNOT Circuits on NISQ Hardware

(a) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of the synthesized CNOT count. Qiskit has the worst
scalability when the original CNOT count grows exponentially

(b) Compare NAPermRowCol with PermRowCol and ROWCOL
in terms of the synthesized CNOT count. This is the zoomed-in
version of the lefthand side.

(c) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of their respective costs. Qiskit has the worst scala-
bility when the original CNOT count grows exponentially.

(d) Compare NAPermRowCol with PermRowCol and ROWCOL in
terms of their respective costs. This is the zoomed-in version of the
lefthand side.

Figure 30: IBM’s fake Guadalupe backend hosts 16 qubits. We benchmark with its 16-qubit connected subgraph and
compare NAPermRowCol against three state-of-the-art CNOT synthesis algorithms. For each original CNOT count,
input 100 randomly generated CNOT circuits to each algorithm, obtain the synthesized CNOT circuits, then average
their gate count and the circuit cost. The x-axis in each figure uses a logarithmic scale as the input gate count grows
exponentially. The y-axis of Figure 30a uses a logarithmic scale, while the one in Figures 30b to 30d uses a linear
scale. Compared to Figures 30a and 30c, Figures 30b and 30d get rid of the data related to Qiskit so that the remaining
ones are distributed in a more compact area. They serve as the zoomed-in versions which allow us to compare the
performance of NAPermRowCol, PermRowCol, and ROWCOL more closely. For input circuits of more than 64 CNOT
counts, NAPermRowCol outperforms other algorithms in terms of the synthesized CNOT count and circuit cost. It
demonstrates remarkable scalability when the input circuit size grows exponentially.
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E.3 Benchmark on IBM’s Fake Cairo Backend

Circuit Original
Qiskit ROWCOL PermRowCol NAPermRowCol

Width CNOT Count

5

4 4.13 (8.12%) 4.61 (20.68%) 4.05 (6.02%) 3.82
8 11.28 (26.03%) 11.75 (31.28%) 10.30 (15.08%) 8.95
16 25.41 (117.18%) 17.09 (46.07%) 13.04 (11.45%) 11.70
32 55.58 (341.81%) 17.85 (41.89%) 13.89 (10.41%) 12.58
64 120.31 (899.25%) 19.00 (57.81%) 14.00 (16.28%) 12.04
128 246.29 (1881.42%) 17.91 (44.09%) 13.76 (10.70%) 12.43
256 501.19 (3988.01%) 18.45 (50.49%) 13.80 (12.56%) 12.26
512 1002.96 (7942.98%) 18.89 (51.48%) 13.77 (10.43%) 12.47

1024 2021.27 (16031.44%) 18.56 (48.12%) 13.54 (8.06%) 12.53

7

4 3.85 (3.49%) 3.85 (3.49%) 3.82 (2.69%) 3.72
8 11.86 (3.58%) 14.60 (27.51%) 12.53 (9.43%) 11.45
16 30.90 (26.33%) 31.52 (28.86%) 26.34 (7.69%) 24.46
32 76.55 (152.39%) 40.04 (32.01%) 34.34 (13.22%) 30.33
64 164.84 (420.66%) 42.13 (33.07%) 35.48 (12.07%) 31.66
128 342.74 (973.07%) 41.74 (30.68%) 35.19 (10.18%) 31.94
256 708.43 (2156.87%) 41.70 (32.84%) 33.54 (6.85%) 31.39
512 1452.64 (4495.51%) 40.42 (27.87%) 34.83 (10.19%) 31.61

1024 2925.63 (8982.99%) 40.28 (25.05%) 34.12 (5.93%) 32.21

16

4 3.98 (1.53%) 4.40 (12.24%) 3.94 (0.51%) 3.92
8 8.82 (-2.97%) 9.65 (6.16%) 8.96 (-1.43%) 9.09
16 32.69 (-38.10%) 60.23 (14.05%) 55.92 (5.89%) 52.81
32 102.45 (-20.72%) 153.30 (18.63%) 135.98 (5.23%) 129.22
64 264.28 (21.73%) 245.55 (13.10%) 226.74 (4.44%) 217.11
128 603.25 (141.35%) 278.36 (11.37%) 260.97 (4.41%) 249.95
256 1294.44 (416.74%) 275.55 (10.00%) 264.12 (5.44%) 250.50
512 2694.88 (972.50%) 276.54 (10.06%) 263.68 (4.94%) 251.27

1024 5527.37 (2111.39%) 274.74 (9.92%) 261.06 (4.44%) 249.95

Table 8: IBM’s fake Cairo backend hosts 27 qubits. We benchmark with its 5-, 7-, and 16-qubit connected subgraph
and compare NAPermRowCol with other state-of-the-art CNOT synthesis algorithms in terms of the synthesized CNOT
count. Qiskit is short for “Qiskit transpilation at optimization level 3”. It implements the SWAP-based heuristic algorithm
SABRE. For each row (i.e., the original CNOT count), input 100 randomly generated CNOT circuits to each algorithm
listed in the table header, then calculate the average synthesized CNOT count. The value in each bracket shows the
percentage difference compared to the results of NAPermRowCol.
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Circuit Original
Qiskit ROWCOL PermRowCol NAPermRowCol

Width CNOT Count

5

4 0.0547 (8.11%) 0.0609 (20.35%) 0.0559 (10.47%) 0.0506
8 0.1605 (34.55%) 0.1561 (30.82%) 0.1451 (21.60%) 0.1193
16 0.3100 (105.96%) 0.2211 (46.86%) 0.1713 (13.81%) 0.1505
32 0.5277 (254.01%) 0.2188 (46.77%) 0.1709 (14.64%) 0.1491
64 0.7903 (435.71%) 0.2315 (56.92%) 0.1774 (20.24%) 0.1475
128 0.9433 (547.99%) 0.2085 (43.24%) 0.1666 (14.44%) 0.1456
256 0.9956 (594.40%) 0.2147 (49.77%) 0.1666 (16.20%) 0.1434
512 1.0000 (547.47%) 0.2398 (55.27%) 0.1807 (16.97%) 0.1544

1024 1.0000 (523.26%) 0.2386 (48.74%) 0.1808 (12.71%) 0.1604

7

4 0.0548 (3.36%) 0.0549 (3.59%) 0.0542 (2.15%) 0.0530
8 0.1632 (9.82%) 0.1933 (30.11%) 0.1660 (11.72%) 0.1486
16 0.3549 (28.35%) 0.3618 (30.86%) 0.3077 (11.30%) 0.2765
32 0.6530 (96.39%) 0.4239 (27.49%) 0.3849 (15.76%) 0.3325
64 0.8849 (160.36%) 0.4419 (30.01%) 0.3914 (15.15%) 0.3399
128 0.9854 (189.61%) 0.4356 (28.01%) 0.3792 (11.45%) 0.3403
256 0.9997 (185.68%) 0.4611 (31.77%) 0.3972 (13.51%) 0.3500
512 1.0000 (194.61%) 0.4340 (27.86%) 0.3854 (13.53%) 0.3394

1024 1.0000 (192.17%) 0.4313 (26.01%) 0.3769 (10.11%) 0.3423

16

4 0.0575 (0.96%) 0.0632 (11.03%) 0.0573 (0.56%) 0.0569
8 0.1257 (-0.32%) 0.1339 (6.14%) 0.1264 (0.17%) 0.1262
16 0.4049 (-17.47%) 0.5615 (14.46%) 0.5343 (8.91%) 0.4906
32 0.7800 (-3.71%) 0.8810 (8.75%) 0.8478 (4.65%) 0.8101
64 0.9811 (3.71%) 0.9747 (3.03%) 0.9647 (1.97%) 0.9460
128 0.9998 (3.99%) 0.9809 (2.02%) 0.9757 (1.48%) 0.9614
256 1.0000 (3.61%) 0.9810 (1.64%) 0.9777 (1.30%) 0.9651
512 1.0000 (3.37%) 0.9837 (1.68%) 0.9790 (1.20%) 0.9674

1024 1.0000 (4.11%) 0.9775 (1.76%) 0.9723 (1.22%) 0.9605

Table 9: IBM’s fake Cairo backend hosts 27 qubits. We benchmark with its 5-, 7-, and 16-qubit connected subgraph and
compare NAPermRowCol with other state-of-the-art CNOT synthesis algorithms in terms of the Cost metric. For each
row (i.e., the original CNOT count), input 100 randomly generated CNOT circuits to each algorithm listed in the table
header, then calculate the average synthesized CNOT count. The value in each bracket shows the percentage difference
compared to the results of NAPermRowCol.
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(a) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of the synthesized CNOT count. Qiskit has the worst
scalability when the original CNOT count grows exponentially.

(b) Compare NAPermRowCol with PermRowCol and ROWCOL
in terms of the synthesized CNOT count. This is the zoomed-in
version of the lefthand side.

(c) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of their respective costs. Qiskit has the worst scala-
bility when the original CNOT count grows exponentially.

(d) Compare NAPermRowCol with PermRowCol and ROWCOL in
terms of their respective costs. This is the zoomed-in version of the
lefthand side.

Figure 31: IBM’s fake Cairo backend hosts 27 qubits. We benchmark with its 5-qubit connected subgraph and compare
NAPermRowCol against three state-of-the-art CNOT synthesis algorithms. For each original CNOT count, input 100 ran-
domly generated CNOT circuits to each algorithm, obtain the synthesized CNOT circuits, then average their gate count and
the circuit cost. The x-axis in each figure uses a logarithmic scale as the input gate count grows exponentially. The y-axis
of Figure 31a uses a logarithmic scale, while the one in Figures 31b to 31d uses a linear scale. Compared to Figures 31a
and 31c, Figures 31b and 31d get rid of the data related to Qiskit so that the remaining ones are distributed in a more
compact area. They serve as the zoomed-in versions which allow us to compare the performance of NAPermRowCol,
PermRowCol, and ROWCOL more closely. For all input circuits of different CNOT counts, NAPermRowCol outperforms
other algorithms in terms of the synthesized CNOT count and circuit cost. It demonstrates remarkable scalability when
the input circuit size grows exponentially.
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(a) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of the synthesized CNOT count. Qiskit has the worst
scalability when the original CNOT count grows exponentially.

(b) Compare NAPermRowCol with PermRowCol and ROWCOL
in terms of the synthesized CNOT count. This is the zoomed-in
version of the lefthand side.

(c) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of their respective costs. Qiskit has the worst scala-
bility when the original CNOT count grows exponentially.

(d) Compare NAPermRowCol with PermRowCol and ROWCOL in
terms of their respective costs. This is the zoomed-in version of the
lefthand side.

Figure 32: IBM’s fake Cairo backend hosts 27 qubits. We benchmark with its 7-qubit connected subgraph and compare
NAPermRowCol against three state-of-the-art CNOT synthesis algorithms. For each original CNOT count, input 100 ran-
domly generated CNOT circuits to each algorithm, obtain the synthesized CNOT circuits, then average their gate count and
the circuit cost. The x-axis in each figure uses a logarithmic scale as the input gate count grows exponentially. The y-axis
of Figure 32a uses a logarithmic scale, while the one in Figures 32b to 32d uses a linear scale. Compared to Figures 32a
and 32c, Figures 32b and 32d get rid of the data related to Qiskit so that the remaining ones are distributed in a more
compact area. They serve as the zoomed-in versions which allow us to compare the performance of NAPermRowCol,
PermRowCol, and ROWCOL more closely. For all input circuits of different CNOT counts, NAPermRowCol outperforms
other algorithms in terms of the synthesized CNOT count and circuit cost. It demonstrates remarkable scalability when
the input circuit size grows exponentially.
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(a) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of the synthesized CNOT count. Qiskit has the worst
scalability when the original CNOT count grows exponentially.

(b) Compare NAPermRowCol with PermRowCol and ROWCOL
in terms of the synthesized CNOT count. This is the zoomed-in
version of the lefthand side.

(c) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of their respective costs. Qiskit has the worst scala-
bility when the original CNOT count grows exponentially.

(d) Compare NAPermRowCol with PermRowCol and ROWCOL in
terms of their respective costs. This is the zoomed-in version of the
lefthand side.

Figure 33: IBM’s fake Cairo backend hosts 27 qubits. We benchmark with its 16-qubit connected subgraph and compare
NAPermRowCol against three state-of-the-art CNOT synthesis algorithms. For each original CNOT count, input 100 ran-
domly generated CNOT circuits to each algorithm, obtain the synthesized CNOT circuits, then average their gate count and
the circuit cost. The x-axis in each figure uses a logarithmic scale as the input gate count grows exponentially. The y-axis
of Figure 33a uses a logarithmic scale, while the one in Figures 33b to 33d uses a linear scale. Compared to Figures 33a
and 33c, Figures 33b and 33d get rid of the data related to Qiskit so that the remaining ones are distributed in a more
compact area. They serve as the zoomed-in versions which allow us to compare the performance of NAPermRowCol,
PermRowCol, and ROWCOL more closely. For input circuits of more than 64 CNOT counts, NAPermRowCol outper-
forms other algorithms in terms of the synthesized CNOT count and circuit cost. It demonstrates remarkable scalability
when the input circuit size grows exponentially.
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(a) Each vertex corresponds to a physical qubit. Each edge represents a CNOT gate that
can be performed on the qubits corresponding to its endpoints.

Edge Edge Weight
(0, 1) 0.009690
(1, 2) 0.015158
(1, 4) 0.007311
(2, 3) 0.013654
(3, 5) 0.012821
(4, 7) 0.011911
(5, 8) 0.008868
(6, 7) 0.006946
(7, 10) 0.006762
(8, 9) 0.012718
(8, 11) 0.009196
(10, 12) 0.019895
(11, 14) 0.010583
(12, 13) 0.007202
(12, 15) 0.007804
(13, 14) 0.012091

(b) For e = (u,v) ∈ EG, ωG(e) is the error
rate of coupling physical qubits u and v.

Figure 24: G = (VG,EG,ωG) is the connectivity graph of IBM’s fake Guadalupe backend. It is an undirected edge-
weighted connected graph. |VG|= 16, ωG : EG→{x ∈ R; 0≤ x < 1}.
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(a) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of the synthesized CNOT count. Qiskit has the worst
scalability when the original CNOT count grows exponentially.

(b) Compare NAPermRowCol with PermRowCol and ROWCOL
in terms of the synthesized CNOT count. This is the zoomed-in
version of the lefthand side.

(c) Compare NAPermRowCol with PermRowCol, ROWCOL, and
Qiskit in terms of their respective costs. Qiskit has the worst scala-
bility when the original CNOT count grows exponentially.

(d) Compare NAPermRowCol with PermRowCol and ROWCOL in
terms of their respective costs. This is the zoomed-in version of the
lefthand side.

Figure 28: IBM’s fake Guadalupe backend hosts 16 qubits. We benchmark with its 5-qubit connected subgraph and
compare NAPermRowCol against three state-of-the-art CNOT synthesis algorithms. For each original CNOT count,
input 100 randomly generated CNOT circuits to each algorithm, obtain the synthesized CNOT circuits, then average
their gate count and the circuit cost. The x-axis in each figure uses a logarithmic scale as the input gate count grows
exponentially. The y-axis of Figure 28a uses a logarithmic scale, while the one in Figures 28b to 28d uses a linear
scale. Compared to Figures 28a and 28c, Figures 28b and 28d get rid of the data related to Qiskit so that the remaining
ones are distributed in a more compact area. They serve as the zoomed-in versions which allow us to compare the
performance of NAPermRowCol, PermRowCol, and ROWCOL more closely. For all input circuits of different CNOT
counts, NAPermRowCol outperforms other algorithms in terms of the synthesized CNOT count and circuit cost. It
demonstrates remarkable scalability when the input circuit size grows exponentially.
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