
Lower T -count with faster algorithms
arXiv:2407.08695

Vivien Vandaele1,2

1Eviden Quantum Lab, Les Clayes-sous-Bois, France
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Abstract

Among the cost metrics characterizing a quantum circuit, the T -count stands out as one
of the most crucial as its minimization is particularly important in various areas of quantum
computation such as fault-tolerant quantum computing and quantum circuit simulation. In this
work, we contribute to the T -count reduction problem by proposing efficient T -count optimizers
with low execution times. In particular, we greatly improve the complexity of TODD, an algorithm
currently providing the best T -count reduction on various quantum circuits. We also propose
some modifications to the algorithm which are leading to a significantly lower number of T
gates. In addition, we propose another algorithm which has an even lower complexity and that
achieves a better or equal T -count than the state of the art on most quantum circuits evaluated.
We also prove that the number of T gates in the circuit obtained after executing our algorithms
on a Hadamard-free circuit composed of n qubits is upper bounded by n(n + 1)/2 + 1, which
is the best known upper bound achievable in polynomial time. From this we derive an upper
bound of (n + 1)(n + 2h)/2 + 1 for the number of T gates in a Clifford+T circuit where h is
the number of internal Hadamard gates in the circuit, i.e. the number of Hadamard gates lying
between the first and the last T gate of the circuit.

1 Introduction

The T gate has a high fault-tolerant implementation cost in most quantum error correcting codes.
Consequently, the T -count minimization problem is an important problem to tackle in order to
improve the feasibility and efficiency of fault-tolerant quantum computing.

The algorithms achieving the best T -count reduction are foremostly designed for the restricted
class of {CNOT, S, T} circuits. The problem of T -count optimization for this class of circuits has
been well defined by showing its equivalence with the problem of decoding Reed-Muller codes [1].
In particular, it was demonstrated that the codewords of the punctured Reed-Muller code of length
2n−1 and order n−4 are generating the complete set of identities that can be used to optimize the
number of T gates in {CNOT, S, T} circuits. Reducing the number of T gates can then be done
by finding relevant identities in this large set. For example it has been shown that a particular
subset of identities, called spider nest identities, can be efficiently exploited to reduce the number
of T gates [2–5]. An effective way to find relevant identities that can be applied to reduce the
number of T gates was given by the TODD algorithm [6]. However, an important drawback of
the TODD algorithm is its complexity of O(n3m5) where n is the number of qubits and m is the
number of T gates in the initial circuit, which makes it impractical for circuits of large size. In
this work, we show how the complexity of the TODD algorithm can be reduced to O(n4m3), where
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n ≤ m. In addition, we propose some modifications to the TODD algorithm which are resulting in
a significantly improved reduction in the number of T gates. We also propose another algorithm
which has an even lower complexity of O(n2m3) and that achieves better results than the original
TODD algorithm on most quantum circuits evaluated. We also prove our algorithms are producing
quantum circuits in which the T -count is upper bounded by (n2 +n)/2+ 1, where n is the number
of qubits. We extend our results for minimizing the number of RZ(π/2

d) gates, where d is a
non-negative integer. We demonstrate an upper bound for the number of RZ(π/2

d) gates in a
Clifford+{RZ(π/2

d), RZ(2π/2
d)} circuit. For Clifford+T circuits we obtain an upper bound of

(n + 1)(n + 2h)/2 + 1 for the number of T gates, which can be satisfied in polynomial time and
without any ancillary qubit, and where h is the number of internal Hadamard gates in the circuit.

2 Main results

The problem of minimizing the number of T gates in a {CNOT, S, T} circuit corresponds to the
following third order symmetric tensor rank decomposition (3-STR) problem [6].

Problem 1 (3-STR). Let A ∈ Z(n,n,n)
2 be a symmetric tensor such that

Aα,β,γ = Aα′,β′,γ′ (1)

for all α, β, γ and α′, β′, γ′ satisfying the set equality {α, β, γ} = {α′, β′, γ′}. Find a Boolean matrix
P of size n×m such that

Aα,β,γ = |Pα ∧ Pβ ∧ Pγ | (mod 2) (2)

for all α, β, γ satisfying 0 ≤ α ≤ β ≤ γ < n, with minimal m.

We will refer to the Boolean matrix P as the parity table. Note that if P contains two identical
columns, then Equation 2 would still be satisfied if we remove these two columns from P . Then, a
common way of tackling this problem is to start from a parity table P satisfying Equation 2, and
to find some vectors z and y such that

|P ′
α ∧ P ′

β ∧ P ′
γ | ≡ |Pα ∧ Pβ ∧ Pγ | (mod 2) (3)

where P ′ = P ⊕ zyT contains at least two identical columns. To find these two vectors z and y,
we propose the following theorem.

Theorem 1. Let P be a parity table of size n×m and P ′ = P ⊕ zyT where z and y are vectors
of size n and m respectively such that

|y| ≡ 0 (mod 2) (4)

|Pα ∧ y| ≡ 0 (mod 2) (5)

|Pα ∧ Pβ ∧ y| ≡ 0 (mod 2) (6)

for all 0 ≤ α < β < n. Then we have

|P ′
α ∧ P ′

β ∧ P ′
γ | ≡ |Pα ∧ Pβ ∧ Pγ | (mod 2) (7)

for all 0 ≤ α ≤ β ≤ γ < n.
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On the basis of this theorem, we can derive an algorithm for optimizing the number of T gates
in a {CNOT, S, T} circuit. This algorithm has a complexity of O(n2m3), which is much lower than
the O(n3m5) complexity of the TODD algorithm [6]. We show that our algorithm provides equivalent
or better results in the T -count than the TODD algorithm in almost all quantum circuits evaluated
in our benchmarks. Furthermore, our algorithm can be used to prove the following theorem:

Theorem 2. The number of T gates in an n-qubits {CNOT, T , S} circuit can be upper bounded
by

2⌊(n2 + n)/4⌋+ 1 ≤ (n2 + n)/2 + 1 (8)

in polynomial time.

Note that this upper bound is asymptotically better than the previously best known upper
bound of (n2 + 3n− 14)/2 [7].

The key mechanism of the TODD algorithm rests on the following theorem, which was first proven
in Reference [6].

Theorem 3. Let P be a parity table of size n×m and P ′ = P ⊕ zyT where z and y are vectors
of size n and m respectively such that

|y| ≡ 0 (mod 2) (9)

|Pα ∧ y| ≡ 0 (mod 2) (10)

|[zα(Pβ ∧ Pγ)⊕ zβ(Pα ∧ Pγ)⊕ zγ(Pα ∧ Pβ)] ∧ y| ≡ 0 (mod 2) (11)

for all 0 ≤ α < β < γ < n. Then we have

|P ′
α ∧ P ′

β ∧ P ′
γ | ≡ |Pα ∧ Pβ ∧ Pγ | (mod 2) (12)

for all 0 ≤ α ≤ β ≤ γ < n.

Instead of solving this system of equations, we show that we can rely on the following simpler
system of equations to efficiently find the vectors z and y satisfying the Equations 10 and 11 of
Theorem 3. This leads to an algorithm equivalent to the TODD algorithm, but which has an improved
complexity of O(n4m3).

Theorem 4. Let P be a parity table of size n × m, and let z and y be vectors of size n and m
respectively and such that |y| ≡ 0 (mod 2). Let L and X be matrices with rows labelled by (αβ)
such that

Lαβ = Pα ∧ Pβ (13)

Xαβ,γ = zαδβγ ⊕ zβδαγ (14)

for all α, β, γ satisfying 0 ≤ α ≤ β < n and 0 ≤ γ < n, and where δ is the Kronecker delta defined
as follows:

δαβ =

{
0 if α ̸= β,

1 if α = β.
(15)

There exists y′ such that Ly ⊕Xy′ = 0 if and only if the following conditions are satisfied:

|Pα ∧ y| ≡ 0 (mod 2) (16)

|[zα(Pβ ∧ Pγ)⊕ zβ(Pα ∧ Pγ)⊕ zγ(Pα ∧ Pβ)] ∧ y| ≡ 0 (mod 2) (17)

for all 0 ≤ α ≤ β ≤ γ < n.

The conditions given by Equations 10 and 11 of Theorem 3 are sufficient for Equation 12 to
hold but they are not necessary. We also provide a theorem which gives necessary and sufficient
conditions for Equation 12 to be satisfied.
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