
Rise of conditionally clean ancillae for optimizing
quantum circuits
Tanuj Khattar and Craig Gidney

Google Quantum AI, Santa Barbara, California 93117, USA
July 25, 2024

We argue by example that conditionally clean ancillae, recently described by [NZS24],
should become a standard tool in the quantum circuit design kit. We use conditionally
clean ancillae to reduce the gate counts and depths of several circuit constructions. In
particular, we present:

(a) n-controlled NOT using 2n Toffolis and O(log n) depth given 2 clean ancillae.
(b) n-qubit incrementer using 3n Toffolis given log∗

2 n clean ancillae
(c) n-qubit quantum-classical comparator using 3n Toffolis given log∗

2 n clean ancillae.
(d) unary iteration over [0, N) using 2.5N Toffolis given 2 clean ancillae.
(e) unary iteration via skew tree over [0, N) using 1.25N Toffolis given n dirty ancillae.

We also describe a technique for laddered toggle detection to replace clean ancillae
with dirty ancillae in all our constructions with a 2x Toffoli overhead. Our constructions
achieve the lowest gate counts to date with sublinear ancilla requirements and should
be useful building blocks to optimize circuits in the low-qubit regime of Early Fault
Tolerance.

Data availability: The circuit constructions presented in this paper are available at
https://doi.org/10.5281/zenodo.12819218

Contents
1 Introduction 2

2 Background & History 2

3 Conditionally clean ancilla 3

4 Laddered toggle detection when borrowing multiple dirty qubits 4

5 Application of conditionally clean ancilla to n-bit Toffoli circuits 6
5.1 n-bit Toffoli into 2n − 3 Toffoli and O(n) depth using 1 clean ancilla 8
5.2 n-bit Toffoli into 2n − 3 Toffoli and O(log n) depth using 2 clean ancilla 8
5.3 n-bit Toffoli into 4n − 8 Toffoli and O(n) depth using 1 dirty ancilla 11
5.4 n-bit Toffoli into 4n − 8 Toffoli and O(log n) depth using 2 dirty ancilla 11

6 Producing/Consuming all n-bit prefix/suffix ANDs using 3n Toffoli and log∗
2 n clean ancilla 11

6.1 n-bit Incrementer into 3n Toffoli and O(n) depth using log∗
2 n clean ancilla 13

6.2 n-bit LessThanConst into 3n Toffoli and O(n) depth using log∗
2 n clean ancilla . . . 14

7 Constructions for Unary Iteration and QROM 14

Tanuj Khattar: Corresponding author: tanujkhattar4@gmail.com
Craig Gidney: Corresponding author: craig.gidney@gmail.com

1

ar
X

iv
:2

40
7.

17
96

6v
1

 [
qu

an
t-

ph
]

 2
5

Ju
l 2

02
4

https://doi.org/10.5281/zenodo.12819218
mailto:tanujkhattar4@gmail.com
mailto:craig.gidney@gmail.com

7.1 Unary Iteration as a tree traversal . 15
7.2 Unary iteration and QROM using conditionally clean ancillae 15
7.3 Unary iteration and QROM using dirty ancilla . 16

8 Conclusion 16

9 Contributions 16

10 Acknowledgements 16

1 Introduction
Clean (or dirty) ancilla qubits are often used [Gid15a; Gid15b; Gid18] as temporary workspace
when decomposing an arbitrary n-bit unitary into constant-sized gates like the Toffoli gate. When
evaluating the efficiency of a decomposition, there are three main factors that one needs to compare:
(a) number of additional ancilla qubits used as workspace (b) gate counts and (c) depth. When
optimizing circuits for the fault tolerant regime using a surface code architecture, the target gateset
is Clifford + T / Toffoli and cost of the decomposition is dominated by the number of T / Toffoli
gates, which are significantly more expensive to execute as compared to Clifford gates [Lit19;
Fow+12].

Several works have focused on coming up with efficient circuit constructions, with low T /
Toffoli counts and reduced ancilla usage, for a wide variety of applications like quantum chem-
istry [Rub+23; Kim+22; Lee+21], quantum dynamics [Rub+24; Agr+24], combinatorial opti-
mization [San+20], and quantum arithmetic circuits such as for Shor’s algorithm [Gid17; Lit23].
There are often tradeoffs where one can reduce the number of T / Toffoli gates in the decomposi-
tion by using a greater number of ancilla qubits as temporary workspace [Gid15a; Gid15b; Gid18;
ZSL24].

We say an ancilla is “clean” when it is initialized into a known state (typically |0⟩) and can be
discarded after use. By contrast, a dirty ancilla qubit is available for use but has an unknown state
that can be temporarily perturbed but must be restored eventually. For example, a dirty ancilla
qubit could be a qubit from somewhere else in the computation that happens to be currently idle.
Clean ancillae are often more useful than dirty ancillae since they avoid the need for techniques
like toggle detection, which generally adds a 2x gate count overhead [Gid15a; NZS24], and can be
uncomputed using measurement based uncomputation [Jon13; Gid18].

In this work, we describe a trick where certain system qubits are in a conditionally known
state. Their state is unknown, dirty, unless it is conditioned on a subset of other system qubits.
Thus they are called “conditionally clean ancilla” qubits. For example, suppose that the control
qubits of an AND gate are in an unknown state. In the subset of the superposition where the
output qubit of the AND gate is ON, the control qubits must also be ON. The control qubits are
clean when conditioned on the output; they are conditionally clean. Although conditionally clean
ancilla qubits are technically dirty, they can be used in many respects as if they were clean. For
example, although you cannot uncompute a conditionally clean ancilla using measurement based
uncomputation, you can often avoid costs like repeating a circuit twice to perform toggle detection.

We use conditionally clean qubits to come up with new optimized circuit constructions for a
variety of fault tolerant quantum primitives in the low ancilla usage regime: the n-control NOT,
the n-qubit Incrementer, quantum-classical comparator circuits, and others (see Table 1). Our
constructions improve upon the previously best known results, in terms of T / Toffoli counts and
circuit depths, in the regime of sublinear ancilla usage. We believe these examples demonstrate that
conditionally clean qubits are an obviously useful tool for optimizing quantum circuit constructions,
and that there will be many other uses beyond the specific constructions that we provide.

2 Background & History
There have been several recent papers independently discovering or using conditionally clean qubits.
It seems to be an example of an idea whose time is “due”.

2

Gate Toffoli T
Type Ancilla Source Cost Depth Cost Depth
MCXn One clean [Gid15a] 6n O(n) 24n O(n)

One dirty [Gid15a] 8n O(n) 32n O(n)
One dirty [ZB24] 4n − 8 O(n) 16n − 32 8n - 6
One clean [Cla+24] O(n log4 n) O(log3 n) O(n log4 n) O(log3 n)
One clean [NZS24] O(n) (≈ 3n) O(log n) O(n) O(log n)
One clean Ours - Section 5.1 2n − 3 O(n) 8n − 12 O(n)
Two clean Ours - Section 5.2 2n − 3 O(log n) 8n − 12 O(log n)
One dirty Ours - Section 5.3 4n − 8 O(n) 16n − 32 O(n)
Two dirty Ours - Section 5.4 4n − 8 O(log n) 16n − 32 O(log n)

Incrementern One clean [Gid15b] 32n O(n) 128n O(n)
One clean [NZS24] O(n) (≈ 64n) O(log2 n) O(n) (≈ 256n) O(log2 n)
log∗

2 n clean Ours - Section 6.1 3n O(n) 12n O(n)
Ut⊕(x<c) Two clean [Gid17] O(n log n) O(n log n) O(n log n) O(n log n)
(LessThanCn) One clean [Yua+23] O(n2) O(n2) O(n2) O(n2)

log∗
2 n clean Ours - Section 6.2 3n O(n) 12n O(n)

UnaryIteration n = log2 N clean [Bab+18] N − 1 O(N) 4N − 4 O(N)
(balanced tree) log∗

2 n clean Ours - Section 7.2 2.5N − 1 O(N) 10N − 4 O(N)
(skew tree) log∗

2 n clean Ours - Section 7.2 2.25N − 1 O(N) 9N − 4 O(N)
(balanced tree) n = log2 N dirty Ours - Section 7.3 1.5N + O(n

√
N) O(N) 6N + O(n

√
N) O(N)

(skew tree) n = log2 N dirty Ours - Section 7.3 1.25N +O(n
√

N) O(N) 5N + O(n
√

N) O(N)

Table 1: Comparison of prior work (shaded) to our constructions (not shaded). Note that log∗
2 n ≤ 5 for all practical purposes.

The papers we found that described or used conditionally clean qubits are:

• [Cla+24]. Figure 1 and Section II A divides the n controls into n/b blocks, each of size b and
performs an MCXb with a single clean ancilla as the target to generate b conditionally clean
ancilla, which are then used as targets to perform b different MCXn/b gates in parallel. Since
their focus is on reducing the depth of the circuit, they obtain a decomposition with depth
O(log3 n) and Toffoli count O(n log4 n) for one clean ancilla case.

• [NZS24]. They explain the idea of conditionally clean qubits in Section-3 and note that it
may be of interest to the community beyond their specific constructions. Since their focus is
on getting constructions with optimal scaling, they give a construction for a MCXn in Figure
3 with O(n) Toffoli count and O(log n) Toffoli depth but do not perform constant factor
analysis. We give an implementation of their construction in the supplementary material
for completeness and show that their constant factors for Toffoli count is 3n, whereas our
construction has the optimal Toffoli count of 2n − 3 while preserving the log n-depth.

We also want to mention [CFS24], because our first realization of the concept of a conditionally
clean qubit was triggered by trying to understand why Figure 2 of that paper worked.

3 Conditionally clean ancilla
A clean ancilla qubit is one which is initialized into a known state (typically |0⟩) and can be
discarded after use by leaving it in the same known state once you are done. Clean ancilla qubits
are often used as temporary workspace to store intermediate results and decompose multi qubit
operations into smaller operations [Gid15a; NZS24; ZB24].

Consider the operation AND, which allocates and initializes a qubit t to store the intersection
of two input qubits a and b. That is to say, the AND gate satisfies∑

x,y

λx,yANDa,b,t · |x⟩a |y⟩b =
∑
x,y

λx,y |x⟩a |y⟩b |xy⟩t

3

Notice that, in the state |x⟩a |y⟩b |xy⟩t, xy can only equal 1 if both x = 1 and y = 1. Thus if
t is storing |1⟩ then a and b must also be storing |1⟩. Therefore a and b are conditionally clean
qubits, with the condition being ⟨Zt⟩ = −1. Any computation that does nothing when ⟨Zt⟩ ̸= −1
can be compiled as if a and b happened to be |1⟩.

A particularly interesting property of conditionally clean qubits is that they can catalyze their
own production. Figure 1a shows an example of generating conditionally clean ancilla qubits when
doing an AND gate on a clean ancilla as a target. Figure 1b shows an example of consuming
the conditionally clean qubits a and b to store results of intermediate computations and further
generate conditionally clean ancilla qubits conditioned over multiple control bits.

This idea of consuming a clean qubit to generate new conditionally clean qubits generalizes
beyond the AND gate. For example, if you do an equality check of an n-bit register with a classical
constant and store the result in new clean qubit, then conditioned on the clean qubit being in the
|1⟩ state, you know the state of the input register is equal to the classical constant.

In general, Let f : {0, 1}n → {0, 1}m be any function and let Uf be a unitary that computes
this function on a clean ancilla register of size m such that

|x⟩n |0⟩m Uf−−→ |x⟩n |f(x)⟩m

If there exists a pair (x, f(x)) such that x is the only element in the domain of f that maps
to f(x), then conditioned on the ancilla register being in the state f(x), we know that the system
register would be in the state x. Thus, we can use the system register as a conditionally clean
register that is allocated in a known state x, use it as a temporary workspace to store intermediate
computation results assuming we will consume those results conditioned on the ancilla being in
state f(x), and then uncompute the intermediate computation to restore the state of the system
register to be in x. The system register in this case acts as a register of “conditionally clean”
qubits.

Thus, there are conditions which must be satisfied for us to be able to use system qubits in our
computation as conditionally clean qubits:

• We must consume (at least one) clean ancilla qubits to compute a function f(x) that has
a unique inverse x such that conditioned on the ancilla register being in the state f(x), we
know the system register is in the state x and thus can be used as conditionally clean qubits
to store intermediate results of subsequent computations.

• Any subsequent computation that uses the system register x as conditionally clean qubits
to store intermediate results must consume these results conditioned on the ancilla register
being in the state f(x); i.e. Let g(y) be the result of the computation that uses register x as
a temporary workspace then we must consume f(x) ∧ g(y) as the final output.

In this paper, will mostly look at utilizing the conditionally clean qubits when we wish to
compute a ladder of AND gates. The function f in this case is an AND operation and the pair
(x = {1}n, f(x) = 1) satisfies the criteria defined above. Note that AND operation also distributes
nicely such that f(x, y) = f(x) ∧ f(y) and thus we can compute f(x) on a temporary qubit and
use the register x as a register of “conditionally clean” qubits to store the result of computing
f(y), which is then consumed conditioned on the ancilla being in the state f(x) such that the final
consumed output is f(x) ∧ f(y). Figure 1c shows how to accumulate the AND of n ancillae on 2
qubits by incrementally generating and utilizing conditionally clean ancilla qubits.

Note that an (obvious yet important) restriction of conditionally clean ancilla qubits is that
they cannot be used as temporary workspace for computations that involve the control qubits
which the conditionally clean ancilla is conditioned on. For example, in Figure 1c step-4 can use
only c0 as temporary workspace to accumulate controls c1 and c3 because because the remaining
conditionally clean ancilla c2c4c5 are all conditioned over c1 and so cannot be used to as temporary
workspace for computations involving c1.

4 Laddered toggle detection when borrowing multiple dirty qubits
When implementing a controlled version of a self inverse operation U , one can replace the use of
a clean ancilla qubit with a dirty ancilla qubit by repeating the self inverse controlled operation

4

(a) Application of a Toffoli gate on a clean ancilla qubit as the
target generates two conditionally clean qubits. The percentage
in the green boxes on each wire represent probability of that qubit
being in the |1⟩ state. Conditioned on the ancilla qubit being in
the |1⟩ state, the first two qubits are “conditionally clean”. These
conditionally clean ancillae can be consumed from outside the sub-
circuit in which the qubit is conditioned from. See Figure 1b for
example. Here is quirk link for the circuit presented above.

(b) One of the conditionally clean ancilla from Step-1 is consumed to pro-
duce two more doubly conditioned clean ancilla in Step-2. Step-3 shows how
CCX(c1, anc, trgt) is now equivalent to applying C4X(c0, c1, c2, c3, trgt) since
anc stores c0 ∧ c1 and conditioned on anc being True, i.e. c1 = True, c1 stores
c2 ∧ c3

(c) The staggered pattern continues so we accumulate n controls on n/2 controls using only 1 ancilla by Step-3. Step-4 shows how conditionally clean
ancilla can only be consumed in computations that do not involve the control qubits which the ancilla is conditioned on. To accumulate the result of
open controls c3 ∧ c1, the only c0 can be used as a conditionally clean ancilla since c2, c4 and c5 are all conditionally clean conditioned on c1 and hence
cannot be used as temporary workspace for computations involving c1. Here is a quirk link for circuit presented above.

Figure 1: Observation and utilization of “conditionally clean ancilla” qubits

5

https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22H%22%2C%22H%22%5D%2C%5B%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22%E2%80%A2%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22%E2%97%A6%22%5D%5D%7D
https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22Chance%22%2C%22Chance%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22Chance%22%2C%22Chance%22%2C%22%E2%80%A2%22%2C%22Chance%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22%E2%80%A2%22%2C%22Chance%22%2C%22%E2%80%A2%22%2C%22Chance%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%2C%22Chance%22%2C%22Chance%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%5D%7D

twice. If the control is True and dirty ancilla flips, the self inverse C − U gets applied on both
the branches |0⟩ and |1⟩ of the dirty ancilla. If the control is False, C − U gets applied twice on
the |1⟩ branch and zero times on the |0⟩ branch, effectively applying an identity operation. This
well known trick of substituting a dirty ancilla in the place of a clean ancilla is commonly [Gid15a;
NZS24] called “toggle detection” and we show how it works in Figure 2a.

If the implementation of C − U further borrows a clean ancilla qubit which we wish to replace
with a dirty ancilla qubit, then a naive strategy would be to recursively repeat the toggle detection
strategy described above. Every time we apply toggle detection, we incur a 2x overhead since we
need to apply C − U twice. Thus, if we wish to replace n clean ancillae with n dirty ancillae, we
can end up incurring an overhead that scales exponentially as 2n.

If the subsequent borrowed dirty ancillae are different from the control qubits used for toggle
detection, the borrowed dirty ancillae can be used as clean ancillae and thus we can avoid incurring
the 2x overhead for each subsequent clean ancilla replaced by a dirty ancilla. This construction is
explained in Figure 2b.

We call this trick Laddered Toggle Detection and use it to come up with a new construction
for decomposing n-bit Toffoli into 4n − 8 Toffoli using n − 2 borrowed qubits in Figure 2c.

We note that all our circuit constructions presented below for the clean ancilla case can be
updated to use dirty ancilla with a 2x Toffoli overhead using Laddered Toggle Detection.

5 Application of conditionally clean ancilla to n-bit Toffoli circuits
In this section, we will present a number of new circuit constructions for decomposing n-bit Toffoli’s
into Toffoli gates using conditionally clean qubits. We first reduce the problem of constructing
circuit decomposition assisted by conditionally clean ancilla into the following abstract computer
science problem and show that each strategy for solving the question listed below can lead to a
circuit construction for decomposing n-bit Toffoli gates.

Question 1. Given an array A with n + 1 elements, such that A = [1, 0, 0, ..., 0] i.e. initially
A[0] = 1 and A[i] = 0 for 0 < i ≤ n. In each step, you can perform the following operation:

• Chose indices t, x, y such that t < x < y and A[t] = 1, A[x] = A[y] = 0

• Flip the values of A[x], A[y], A[t]; i.e. set A[t] = 0, A[x] = A[y] = 1

Our objective is to perform a sequence of operations to minimize the number of unmarked elements
(0’s) in the array. We can characterize any valid scheme of performing the operations using the
following 3 parameters -

• K: the number of unmarked elements (i.e. i such that A[i] = 0) at the end of the procedure

• T be the number of operations used

• D be the depth of the sequence of chosen operations, where two operations can be performed
parallely if their (x, y, t) tuples are disjoint

Our goal is to minimize K, T and D.

Theorem 5.1. Each solution to Question 1 defined above can be mapped to a circuit decompo-
sition for accumulating the AND of n-qubits into K qubits using exactly T Toffoli gates, Toffoli
depth of D and 1 clean ancilla qubit

Proof. We can map a sequence of operations satisfying the constraints to a circuit decomposition
as follows:

• For n bit toffoli, each of the n system qubits can be mapped to indices i = 1..n in the array
A.

• The index i = 0, which is initially marked, corresponds to the 1 clean ancilla qubit required
by the decomposition.

6

ctrl

target

n

m U =

|0⟩
U

|0⟩
=

|ψ⟩
U U

|ψ⟩
=

|ψ⟩
U U

|ψ⟩
(i) Clean ancilla (ii) Dirty ancilla v1 (iii) Dirty ancilla v2

(a) Toggle detection to substitue a single clean ancilla with a dirty ancilla.

ctrl[0]

ctrl[1]

target

n1

n2

m U =

|ψ⟩
U U

|ψ⟩
=

|ψ⟩
|ϕ⟩

U U U U

|ψ⟩
|ϕ⟩

=

|ψ⟩
|ϕ⟩

U U

|ψ⟩
|ϕ⟩Using (a.ii) Using (a.iii)

Using (a.ii) Using (a.iii) Subsequent borrowed dirty ancilla can be treated as clean ancilla

(b) Subsequent dirty qubits can be treated as clean qubits since you get toggle detection for free. Note that in addition to U2 = I, another constraint
for this to work is that the decomposition of CU should not use the ctrl[0] qubits from top as dirty ancillae.

ctrl[0]

ctrl[1]

ctrl[2]

ctrl[3]

ctrl[4]

target

=

anc[0]

=

anc[0]

anc[1]

anc[2]

Single round of toggle detection with U = CCCX
CU = CCCCX can be decomposed by treating borrowed dirty ancilla as clean qubits.

(c) An example of utilizing the laddered toggle detection trick to decompose n-bit Toffoli into 4n − 8 Toffoli using n − 2 borrowed ancilla qubits. Note
that this circuit has the same cost as the “arrow pointing away from the target” construction in [Gid15a] but utilizes the toggle detection trick so the
“arrow is pointing towards the target” now. Here is quirk link for the construction presented above.

Figure 2: Laddered Toggle detection can be used to substitute multiple clean ancillae with dirty ancillae with a single round of toggle
detection. U2 = I

7

https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22Counting3%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22Uncounting3%22%5D%5D%7D

• During the course of the procedure, each index i such that A[i] = 1 corresponds to a condi-
tionally clean ancilla qubit which can be consumed as a resource to accumulate the AND of
qubits on the right of it.

• Each operation on a tuple (x, y, t) can be replaced with a gate sequence - [Toffoli(x, y, t), X(t)]
if t is a conditionally clean qubit (i.e. t > 0). If t is a clean qubit (i.e. t = 0), then you can
use an AND(x, y, t) gate instead. Thus, each operation computes x ∧ y and saves the result
on the conditionally clean qubit t. Thus, after the operation is performed, x, y are available
as conditionally clean qubits and t is flipped from a conditionally clean qubit to a system
qubit.

• The constraint that for each operation t < x < y ensures that at any point in time, a
conditionally clean qubit t is clean conditioned on a set of control qubits to the left of it and
is used as temporary workspace to store results of computations for qubits on the right of it.
This invariant ensures that property for conditional cleanliness is always satisfied.

We will now look at specific circuit constructions by first describing solutions to the problem
above and then mapping those solutions to circuits via the procedure described above.

5.1 n-bit Toffoli into 2n − 3 Toffoli and O(n) depth using 1 clean ancilla
One solution to Question 1 can be obtained via a greedy strategy where in each step, you pick the
rightmost marked index t such that A[t] = 1 and there are at least two indices x and y such that
t < x < y and A[x] = A[y] = 0. Pick the leftmost such pair of x and y and apply the operation on
the tuple (x, y, t).

This greedy procedure gives us a solution with K = 2, T = n − 2, D = n − 2 and we can map
it to a circuit for decomposing n-qubit Toffoli into 2n − 3 Toffoli and O(n) depth using 1 clean
ancilla as shown in Figure 3

5.2 n-bit Toffoli into 2n − 3 Toffoli and O(log n) depth using 2 clean ancilla
Another solution to Question 1 that minimizes depth can be described as follows:

• At the i’th timestep, we maintain the invariant that A has leftmost i elements in the 0 state,
the next 2i elements in the 1 state and all the remaining elements in the 0 state. Thus, the
procedure ends in log n such timesteps and K = log n unmarked elements remain in the array
at the end of the procedure. For example, over the course of the algorithm, the array A for
n = 36 would look like:

– At i = 0, A = 1000000000000000000000000000000000000
– At i = 1, A = 0110000000000000000000000000000000000
– At i = 2, A = 0011110000000000000000000000000000000
– At i = 3, A = 0001111111100000000000000000000000000
– At i = 4, A = 0000111111111111111100000000000000000
– At i = 5, A = 0000011111111111111111111111111111111

• In the i’th timestep, we utilize the leftmost 1 of the 2i marked elements as the target and
remaining 2i − 1 marked elements as a temporary workspace to flip the next 2i + 1 elements
by i consecutive sequence of operations of the form (2k, 2k + 1, k) such that they are all
parallelizable and can be performed in depth 1. Thus, we end up with (2i−1)+(2i+1) = 2i+1

marked elements using 2i − 1 operations.

This procedure gives us a solution with K = log n, T = n − log n, D = log n. In order to
map it to a circuit for decomposing n-qubit Toffoli into 2n − 3 Toffoli and O(log n) depth, we can
recursively invoke the linear depth procedure from Section 5.1 and thus obtain a O(log n) depth
decomposition using 2 clean ancilla as shown in Figure 4

8

(a) Step-1 is a “up” Toffoli ladder that uses ⌊ n
2 ⌋ Toffoli’s to accumulate the n control values on ⌊ n

2 ⌋ controls using conditionally clean ancillae. Step-2
then uses a “down” Toffoli ladder with n − ⌊n/2⌋ − 2 Toffoli’s to accumulate the AND of all controls on conditionally clean ancilla ctrl0. Step-3 then
uses 1 Toffoli, which doesn’t appear in a compute/uncompute pair, to apply the n-qubit CnX gate on the target qubit. Step-4 uncomputes the “up”
and “down” Toffoli ladders to return the clean ancilla and intermediate conditional ancilla to their original state. Note that the uncomputation takes 1
less Toffoli since Toffoli on clean ancilla (AND gate) can be uncomputed using measurement based uncomputation and only clifford gates. [Gid18]

(b) Example circuit for decomposing a 19-bit Toffoli into 33 Toffoli + 1 And/And† pair using 1 clean ancilla.

Figure 3: Decomposition of n-qubit Toffoli into 2n − 3 Toffoli using 1 clean ancilla.

9

(a) A circuit primitive used in our construction which first tog-
gles the n conditionally clean ancilla qubits and then applies
n Toffoli gates in parallel. The depth of this primitive is 2.

(b) Step-1 uses the one clean ancilla to generate two conditionally clean ancillae. Step-2
uses a log-depth ladder of n− log n−2 Toffoli’s to accumulate the AND of the remaining
n − 2 controls on log n qubits. Step-3 uses a (log n + 1)-bit Toffoli to accumulate the
AND of all n bits on the target qubit. Step-4 and 5 uncompute Step-2 and 1 respectively.
Step-3 can be implemented by recursively invoking a linear depth construction using 1
additional clean ancilla from Section 5.1

(c) Decomposition of 32-bit Toffoli into 61 Toffolis and O(log2 n) depth using 2 clean ancilla.

Figure 4: Decomposition of n-qubit Toffoli into 2n − 3 Toffoli and O(log n) depth using 2 clean ancilla. Note that the 2 Toffoli’s acting on
clean ancilla qubits are replaced with 2 AND/AND† pairs.

10

(a) Step 1 and 5 are applications of CCX on dirty ancilla anc 0 as target for toggle detection. The “up” and “down” Toffoli ladders in between at steps
2, 4, 6, 8 are responsible to compute/uncompute the AND of all remaining controls on conditionally clean ctrl[0]. Step-3 and 7 flip the target when all
accumulated control bits are ON. When all controls are ON, the target is flipped once in Step-3 if the anc 0 is initially OFF and once in Step-7 if the
anc 0 is initially ON. Each of step 2, 4, 6 and 8 requires n − 3 Toffoli so the construction requires a total of 4n − 8 Toffoli.

target

ctrl[0]

ctrl[1]

ctrl[2]

ctrl[3]

ctrl[4]

ctrl[5]

ctrl[6]

ctrl[7]

ctrl[8]

ctrl[9]

ctrl[10]

ctrl[11]

ctrl[12]

ctrl[13]

ctrl[14]

ctrl[15]

ctrl[16]

ctrl[17]

ctrl[18]

=

dirty alloc dirty free

target

ctrl[0]

ctrl[1]

ctrl[2]

ctrl[3]

ctrl[4]

ctrl[5]

ctrl[6]

ctrl[7]

ctrl[8]

ctrl[9]

ctrl[10]

ctrl[11]

ctrl[12]

ctrl[13]

ctrl[14]

ctrl[15]

ctrl[16]

ctrl[17]

ctrl[18]

(b) Example circuit for decomposing a 19-bit Toffoli into 68 Toffoli using 1 dirty ancilla.

Figure 5: Decomposition of n-qubit Toffoli into 4n − 8 Toffoli using and O(n) depth using 1 dirty ancilla.

5.3 n-bit Toffoli into 4n − 8 Toffoli and O(n) depth using 1 dirty ancilla
The key thing to observe here is that the ancilla qubit used during the clean ancilla decomposition
described in Section 5.1 only becomes the target of a single CCX gate and stores c0 ∧ c1 for the
first 2 controls. Thus, we can use the toggle detection trick from Section 4 to repeat the Toffoli
“up” and “down” ladders twice to get a construction where the ancilla qubit can be a dirty ancilla
qubit. This is shown in Figure 5.

5.4 n-bit Toffoli into 4n − 8 Toffoli and O(log n) depth using 2 dirty ancilla
For the first round of decomposition from Section 5.2, we use the standard toggle detection trick
to replace the clean qubit with a dirty qubit. The recursive decomposition using the linear depth
procedure and a second clean ancilla can treat a borrowed dirty ancilla as a clean ancilla, using
the laddered toggle detection trick from Section 4, and thus the recursive decomposition remains
identical to the clean ancilla case. This is shown in Figure 6

6 Producing/Consuming all n-bit prefix/suffix ANDs using 3n Toffoli
and log∗

2 n clean ancilla
If we had access to n clean ancilla qubits, one could build a ladder of n AND/AND† gates such
that the i’th ancilla qubit stores the prefix / suffix AND of first / last i qubits. Then, we can
consume each prefix / suffix AND using a CNOT gate controlled on the i’th ancilla. This gives us
a decomposition which uses 2n Toffoli (or n pairs of AND/AND†) gates to compute / uncompute
every prefix / suffix AND and we can consume them using a single CNOT gate.

With the help of conditionally clean ancilla qubits, we will aim to achieve the same thing - i.e.
compute and uncompute the prefix / suffix AND of all of the n qubits on n different conditionally
clean qubits using 2n Toffoli gates and consume each prefix/suffix AND using a Toffoli gate. This

11

target

ctrl[0]

ctrl[1]

ctrl[2]

ctrl[3]

ctrl[4]

ctrl[5]

ctrl[6]

ctrl[7]

ctrl[8]

=

dirty alloc dirty free

=

dirty alloc

@(x)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(y)

dirty free

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(y)

target

ctrl[0]

ctrl[1]

ctrl[2]

ctrl[3]

ctrl[4]

ctrl[5]

ctrl[6]

ctrl[7]

ctrl[8]

Step-1 Step-2 Step-3 Step-4 Step-1 Step-2 Step-3 Step-2

(a) Step-1 and 3 implement toggle detection using the first borrowed ancilla. Steps-2 and 4 use the laddered toggle detection trick from Figure 2 to
decompose an (n − 1)-bit Toffoli into 2n − 5 Toffoli using 1 dirty ancilla, by treating the dirty ancilla as clean and using decomposition from Figure 4.
The overall Toffoli complexity is 4n − 8
target

ctrl[0]

ctrl[1]

ctrl[2]

ctrl[3]

ctrl[4]

ctrl[5]

ctrl[6]

ctrl[7]

ctrl[8]

ctrl[9]

ctrl[10]

ctrl[11]

ctrl[12]

ctrl[13]

ctrl[14]

ctrl[15]

ctrl[16]

ctrl[17]

ctrl[18]

ctrl[19]

ctrl[20]

ctrl[21]

ctrl[22]

ctrl[23]

ctrl[24]

ctrl[25]

ctrl[26]

ctrl[27]

ctrl[28]

ctrl[29]

ctrl[30]

ctrl[31]

=

dirty alloc

dirty alloc

@(x)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(x)

@(x)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(x)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(y)

@(y)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(x)

@(x)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(y)

@(x)

@(y)

dirty free

dirty free

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(x)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(y)

@(y)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(x)

@(x)

@(x)

@(y)

@(y)

@(y)

@(y)

@(x)

@(y)

@(x)

@(x)

@(y)

@(y)

@(x)

@(y)

@(x)

@(y)

target

ctrl[0]

ctrl[1]

ctrl[2]

ctrl[3]

ctrl[4]

ctrl[5]

ctrl[6]

ctrl[7]

ctrl[8]

ctrl[9]

ctrl[10]

ctrl[11]

ctrl[12]

ctrl[13]

ctrl[14]

ctrl[15]

ctrl[16]

ctrl[17]

ctrl[18]

ctrl[19]

ctrl[20]

ctrl[21]

ctrl[22]

ctrl[23]

ctrl[24]

ctrl[25]

ctrl[26]

ctrl[27]

ctrl[28]

ctrl[29]

ctrl[30]

ctrl[31]

(b) Example circuit for decomposing a 19-bit Toffoli into 68 Toffoli using 1 dirty ancilla and O(log n) depth.

Figure 6: Decomposition of n-qubit Toffoli into 4n − 8 Toffoli using and O(log n) depth using 2 dirty ancilla.

12

(a) Naive incrementer using n MCX gates. (b) Incrementer using conditionally clean qubits and 3n Toffoli.

(c) 19 qubit Incrementer recursively decomposed to produce/consume prefix AND for all of the first 18 prefixes using 3n Toffoli and 3 clean ancillae.

Figure 7: Decomposition of n-bit Incrementer into 3n Toffoli and O(n) depth using log∗
2 n clean ancilla.

gives us an overall Toffoli complexity of 3n instead of 2n, like the clean ancilla case described
above, because consuming a prefix AND stored on a conditionally clean ancilla requires a Toffoli
gate instead of a CNOT gate.

The construction is shown in Figure 7 and follows closely from the the construction described
in Section 5.2 but instead of processing the i’th batch of size 2i in log-depth, we now process it
in linear depth and compute the prefix AND using 2i − 1 conditionally clean ancilla qubits as
temporary workspace.

Also, this time we need to recursively apply the same decomposition that computes the prefix
AND over the K = log n unmarked items obtained after the first decomposition because we wish
to consume the prefix ANDs sequentially and thus we want to build the structure recursively.
Figure 7b shows the circuit structure after only the first level of decomposition where consuming
the prefix ANDs require you to apply a log n-controlled MCX instead of a Toffoli. Figure 7c shows
the full recursive decomposition where the log n-controlled MCX are recursively decomposed until
log∗

2 n ≤ 1 using the same strategy so that we can access the prefix AND of every prefix by
controlling on at-most 2 qubits using a Toffoli gate.

For all practical purposes, the required number of ancilla qubits is 5. Requiring six ancilla
qubits would mean you were attempting to increment an integer with more digits than atoms in
the observable universe.

6.1 n-bit Incrementer into 3n Toffoli and O(n) depth using log∗
2 n clean ancilla

Figure 7a shows a naive decomposition of an Incrementer gate into n different MCX gates, which
was described in [Gid15b]. The key thing to observe here is that we need to compute and consume
the prefix AND of all of the first i qubits one by one. We now use the technique described
above to decompose this ladder of prefix AND’s into 3n Toffoli’s using log∗

2 n clean ancillae. The
decomposition is explained in Figure 7

13

(a) Naive LessThanConst using n MCX gates. Here is a quirk link of a circuit which shows this reduction.

(b) 19-bit LessThanConst for constant c = 349525 that has a binary representation 1010101010101010101. The quantum-classical comparator uses 3
clean ancillae and 47 Toffoli gates.

Figure 8: Decomposition of n-bit LessThanConst into 3n Toffoli and O(n) depth using log∗
2 n clean ancilla.

6.2 n-bit LessThanConst into 3n Toffoli and O(n) depth using log∗
2 n clean ancilla

A LessThanConst primitive implements a Quantum-Classical comparison of the form

LessThanConstc |x⟩ |t⟩ → |x⟩ |t ⊕ (x < c)⟩

In Figure 8a we describe a way of reducing the classical-quantum comparison to consuming a
ladder of suffix AND’s where the number of suffix ANDs to consume depends upon the bits of the
classical constant c. In the worst case, we consume all n suffix AND’s.

After this reduction, we directly apply the technique described above to decompose the ladder
of suffix AND’s into 3n Toffolis using log∗

2 n clean qubits. The complete decomposition for a specific
constant c is shown in shown in Figure 8b

7 Constructions for Unary Iteration and QROM
Unary iteration is a technique for applying indexed (aka multiplexed) operations on a target register
controlled on the selection register. The technique was introduced in [Bab+18] and since then has
seen widespread use in compiling quantum algorithms[Lee+21; ZSL24; Rub+24; Yua+23]. The
Controlled Unary Iteration construction introduced by [Bab+18] uses n clean ancilla qubits to

14

https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C1%2C%22Counting6%22%5D%2C%5B%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22X%22%2C%22X%22%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C%22X%22%2C%22X%22%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22X%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22Chance6%22%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%5D%7D

iterate on N = 2n indices with a Toffoli cost of N − 1. In this section, we will describe two
new constructions for the low ancilla regime where we either consume a constant number of clean
ancillae and use the system qubits as conditionally clean qubits, or we borrow n dirty qubits from
the system.

7.1 Unary Iteration as a tree traversal
Unary iteration can be viewed as a tree traversal where each node of the tree corresponds to one
or more elements of the range we wish to iterate upon and traversing the tree in a DFS order
produces a circuit that corresponds to unary iteration.

In Figure 9 we explain how one can view the standard unary iteration circuit as a tree traversal
of a balanced binary tree. If we are given n clean ancillae, we can use the circuit elements from
Figure 9c to arrive at the construction with a toffoli cost of N − 1, presented in [Bab+18].

In Figure 9d and Figure 9e we show how we can modify the construction to avoid measurement
based uncomputation with a Toffoli cost of 1.5N − 1. This construction is identical to the one
described in Appendix G.4 of [Chi+18]. Avoiding measurement based uncomputation will become
important when we describe constructions using conditionally clean ancillae or dirty ancillae - both
of which cannot be cleaned up using measurement based uncomputation.

In situations where it’s cheap to apply the inverse of operations we are indexing over, we can
use a different tree than balanced binary trees. In Figure 10a, we give a recursive definition of a
“Skew tree” and in Figure 10b we show how tree traversal of a Skew tree can be translated into
unary iteration. The basic idea of the skewed tree is to replace circuits of the form “if ¬C then
do A; if C then do B” with circuits of the form “do A; if C then do A−1 · B”. Instead of doing A
conditionally, we do A unconditionally but undo A in addition to doing B when C is true. This
optimization works best when A−1 · B is efficient to apply. This is the case in QROM reads, where
A and B are both a product of Pauli X gates. The skewed tree has better behavior when L is not
a power of 2. For example, the lopsided tree over L items has ⌊log2 L⌋ levels, whereas the binary
tree has ⌈log2 L⌉ levels. This saves an ancilla qubit for domain sizes L that are not a power of 2.
The skewed tree associates outputs with every node, instead of only associating outputs with leaf
nodes. This halves the size of the tree, which reduces the size of the circuit. In Figure 10d, we
show how one can use a Skew tree to perform unary iteration of N elements using 1.25N −1 Toffoli
gates and still avoid measurement based uncomputation (compared to 1.5N − 1 using balanced
binary trees).

Here is a quirk link to a QROM circuit that loads the first 16 natural numbers as data = [1, 2, ..., 16]
using a skew tree construction. Many of the controlled reads are 0 because for a skew tree con-
struction, the data to be loaded needs to be modified as follows to account for the undoing the
unconditional read done at a previous index which affects the current index.

skew data = [0] ∗ N
f o r i in range (N) :

f o r j in range (i , N) :
i f i & j == i :

skew data [j] ˆ= data [i]

7.2 Unary iteration and QROM using conditionally clean ancillae
We can use the tricks developed in Section 6 to consume a constant number of clean qubits and use
the generated conditionally clean qubits to produce / consume a prefix AND ladder and combine
it with unary iteration constructions given in Figure 9d and Figure 10d to get a constant ancilla
version of unary iteration using both balanced binary trees and skewed trees. The main overhead
with this approach is that consuming a prefix AND stored on a conditionally clean ancilla requires
a Toffoli instead of a CNOT. Therefore, we get an N Toffoli overhead in both the approaches
described above.

Therefore, a constant number of clean ancillae and conditionally clean qubits, we can do unary
iteration over N elements using 2.5N Toffoli gates via balanced binary trees and 2.25 Toffoli gates
via skewed trees.

15

https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B1%2C1%2C1%2C1%2C%22Counting4%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22Chance4%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22Chance4%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22X%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22X%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22Chance4%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22Chance4%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22Chance4%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22Chance4%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22X%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22X%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22Chance4%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22Chance4%22%5D%2C%5B%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C%22Chance4%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22X%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C%22Chance4%22%2C1%2C1%2C1%2C%22Chance4%22%5D%5D%2C%22init%22%3A%5B0%2C0%2C0%2C1%5D%7D

Here is a quirk link to a circuit where we iterate on N = 16 elements using 37 Toffolis (2.5N)
via balanced binary trees and conditionally clean qubits.

7.3 Unary iteration and QROM using dirty ancilla
If we had access to n dirty qubits instead of clean qubits. We can divide the selection register of
size n into a top half of size k and a bottom half of size n − k. To iterate on the top half, we
execute K = 2k k-bit Toffoli gates using constructions described in Section 5. For each of the K
iterations on the top half, we execute a perform a dirty QROM read on the bottom n − k qubits
using n − k borrowed dirty ancillae. Each of these QROM reads has the same tree shape and is
of size N/K. Since we the ancilla qubits this time are borrowed and can be in an unknown state,
we also need to perform a round of laddered toggle detection as described in Section 4. Because
all the K QROM trees are of identical shape with differing data elements, we can do the toggle
detection via just 1 more QROM read of the same size but where for each leaf node i, we load all
data elements from the i’th leaf nodes of each of the K QROM trees.

The overall cost of the procedure is (K + 1) × QROMDirtyCost(N/K) + O(K ∗ k). Setting
K =

√
N gives us a cost of 1.5N + O(n

√
N) for dirty QROM via balanced binary tree and

1.25N + O(n
√

N) for dirty QROM via the skewed trees case.
Here is a quirk link to a circuit that shows a QROM read using dirty qubits with a single round

of toggle detection where just 1 additional dirty QROM of size N/K suffices to perform toggle
detection for K dirty QROMs because each of the K dirty QROMs have identical tree structure.

8 Conclusion
In this work, we describe a trick for optimizing circuit compilations by observing and utilizing
the presence of “conditionally clean ancilla” qubits and used it to improve upon the previously
best known constructions of n-bit Toffoli and n-bit Incrementer circuits in the sub-linear ancilla
regime. One of the reasons why our constructions are not optimal in terms of T/Toffoli counts
when compared to linear clean ancilla case is because uncomputing a clean ancilla qubit can often
be done with only measurement + clifford operations and requires no T / Toffoli gates. However,
we do not have a way to cheaply uncompute the conditionally clean ancilla qubits we use as part
of our constructions. This gives us a 2x overhead in terms of T / Toffoli gate counts. Its an open
question to figure out whether one can extend the ideas of measurement based uncomputation to
cheaply uncompute the conditionally clean ancilla qubits, similar to the clean ancilla case.

We expect the “conditionally clean ancilla” trick will be useful for circuit optimizations beyond
the specific circuit constructions we provide and should be part of a circuit optimization toolkit
for compilers and researchers.

9 Contributions
Craig guided the project and came up with some initial constructions. Tanuj improved the con-
structions, found additional ones, and wrote the paper as well as the accompanying code.

10 Acknowledgements
We thank Robin Kothari for helpful discussions on the abstract computer science problem presented
in Question 1. We thank Hartmut Neven for creating an environment where this research was
possible.

16

https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22Counting6%22%5D%2C%5B%22QFT6%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22X%22%5D%2C%5B1%2C%22%E2%97%A6%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%97%A6%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22%E2%97%A6%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance4%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22X%22%5D%2C%5B%22QFT%E2%80%A06%22%5D%2C%5B%22Uncounting6%22%5D%5D%7D
https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22Counting3%22%5D%2C%5B1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C%22X%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C%22X%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C1%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%97%A6%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B1%2C1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%2C%22%E2%80%A6%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%2C1%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C%22X%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C%22X%22%2C1%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%2C%22X%22%2C1%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C%22X%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%2C1%2C%22X%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%97%A6%22%2C1%2C1%2C1%2C%22X%22%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B%22%E2%97%A6%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%2C1%2C1%2C1%2C1%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22H%22%2C%22Uncounting3%22%5D%5D%7D

(a) Recursive definition of a balanced binary
tree of depth K + 1. Number of leaf nodes
in BK is 2K and number of internal nodes is
2K − 1. When BK+1 is used for unary iter-
ation, the left subtree corresponds to indices
in the range [0, 2K) (i.e. K + 1’th bit is 0)
and the right subtree corresponds to indices
in the range [2K , 2K+1) (i.e. K + 1’th bit is
1). Outputs are associated only with the leaf
nodes.

(b) When used for unary iteration on N elements, a balanced binary tree has N/2 leaf nodes
(marked in red) and N/2 − 1 internal nodes (marked in green). A DFS traversal of the
tree yields N/2 − 1 DOWN moves, N/2 − 1 BOUNCE moves and N/2 − 1 UP moves. For
controlled unary iteration, the number of UP / DOWN moves is N/2 (an edge comes in
to the root node). Each move corresponds to a circuit element as shown in Figure 9c and
Figure 9d

(c) Circuit elements produced during tree traversal of a balanced binary
tree with clean ancilla. Every DOWN and BOUNCE traversal as a Toffoli
cost of 1. UP traversal has Toffoli cost of 0 since the AND gate can
be uncomputed using measurement based uncomputation [Gid18]. LEAF
traversal to consume data has a Toffoli cost of 0. Thus, Controlled Unary
iteration over N = 2n elements using n clean ancilla has a Toffoli cost of
N − 1. This yields the unary iteration construction from [Bab+18]

(d) Circuit elements produced during tree traversal of a balanced binary tree
with (potentially dirty) ancilla where measurement based uncomputation is
not allowed. Every DOWN, BOUNCE and UP traversal now has a Toffoli
cost of 1. LEAF traversal to consume data has a Toffoli cost of 0. Controlled
Unary iteration over N = 2n elements using n ancilla (without measurement
based uncompuation) has a Toffoli cost of 1.5N − 1. This yields the unary
iteration construction from [Chi+18]

ctrl

x[0]

x[1]

x[2]

x[3]

anc[0]

anc[1]

anc[2]

anc[3]

target QUInt(4) ⊕d[0] ⊕d[1] ⊕d[2] ⊕d[3] ⊕d[4] ⊕d[5] ⊕d[6] ⊕d[7] ⊕d[8] ⊕d[9] ⊕d[10] ⊕d[11] ⊕d[12] ⊕d[13] ⊕d[14] ⊕d[15]

(e) QROM circuit to load N = 16 data elements using 4 ancilla qubits (without measurement based uncomputation) and 1.5N − 3 = 23 Toffoli gates.
Uses circuit elements described in Figure 9d and forms the basis of (i) unary iteration using only 2 clean ancilla and 2.5N Toffoli AND (ii) unary iteartion
using n = log2 N dirty ancilla and 1.5N + O(n

√
N) Toffoli

Figure 9: Unary iteration using balanced binary trees

17

(a) Recursive definition of a Skew tree of depth
K + 1. The size of Sk is 2k, thus when doing
unary iteration a skew tree associates an out-
put with every node. The basic idea of using
skewed trees for unary iteration is to replace
circuits of the form “if ¬C then do A; if C
then do B” with circuits of the form ”do A; if
C then do A−1 · B”. Instead of doing A con-
ditionally, we do A unconditionally but undo
A in addition to doing B when C is true. This
optimization works best when A−1 · B is effi-
cient to apply, which is the case for QROM

(b) When used for unary iteration on N elements, a skew tree has N/4 leaf nodes (marked
in red) and N/4 internal nodes (marked in green). A DFS traversal of the tree yields N/4
DOWN moves, N/4 − 1 BOUNCE moves and N/4 UP moves. Each move corresponds to a
circuit element as shown in Figure 10c and Figure 10d.

(c) Circuit elements produced during tree traversal of a skew tree with clean
ancilla. DOWN traversal has a Toffoli cost of 2, BOUNCE traversal has a
Toffoli cost of 1, UP traversal has a Toffoli cost of 0 since the AND gate can
be uncomputed using measurement based uncomputation [Gid18]. LEAF
traversal to consume data has a Toffoli cost of 1. Thus, Controlled Unary
iteration over N = 2n elements using n clean ancilla has a Toffoli cost of
N − 1.

(d) Circuit elements produced during tree traversal of a skew tree with
(potentially dirty) ancilla where measurement based uncomputation is not
allowed. DOWN traversal has a Toffoli cost of 2. BOUNCE, UP and LEAF
traversals have a Toffoli cost of 1. Thus, Controlled Unary iteration over
N = 2n elements using n ancilla (without measurement based uncompua-
tion) using Skew trees has a Toffoli cost of 5

4 N − 1 = 1.25N − 1.

Figure 10: Optimized Unary iteration using skew trees. The optimization can be applied only when A−1 · B is efficient to apply where A and
B are multiplexed unitaries applied via unary iteration. For example - QROM satisfies this criteria.

18

References
[Agr+24] Anjali A. Agrawal, Joshua Job, Tyler L. Wilson, S. N. Saadatmand, Mark J. Hodson,

Josh Y. Mutus, Athena Caesura, Peter D. Johnson, Justin E. Elenewski, Kaitlyn J.
Morrell, and Alexander F. Kemper. Quantifying fault tolerant simulation of strongly
correlated systems using the Fermi-Hubbard model. 2024. doi: 10.48550/ARXIV.2406.06511.
url: https://arxiv.org/abs/2406.06511.

[Bab+18] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean,
Alexandru Paler, Austin Fowler, and Hartmut Neven. “Encoding Electronic Spectra
in Quantum Circuits with Linear T Complexity”. In: Physical Review X 8.4 (Oct.
2018). issn: 2160-3308. doi: 10.1103/physrevx.8.041015. url: http://dx.doi.org/
10.1103/PhysRevX.8.041015.

[CFS24] Clémence Chevignard, Pierre-Alain Fouque, and André Schrottenloher. Reducing the
Number of Qubits in Quantum Factoring. Cryptology ePrint Archive, Paper 2024/222.
https://eprint.iacr.org/2024/222. 2024. url: https://eprint.iacr.org/2024/
222.

[Chi+18] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. “To-
ward the first quantum simulation with quantum speedup”. In: Proceedings of the Na-
tional Academy of Sciences 115.38 (Sept. 2018), pp. 9456–9461. issn: 1091-6490. doi:
10.1073/pnas.1801723115. url: http://dx.doi.org/10.1073/pnas.1801723115.

[Cla+24] Baptiste Claudon, Julien Zylberman, César Feniou, Fabrice Debbasch, Alberto Pe-
ruzzo, and Jean-Philip Piquemal. “Polylogarithmic-depth controlled-NOT gates with-
out ancilla qubits”. In: Nature Communications 15.1 (July 2024). issn: 2041-1723.
doi: 10.1038/s41467-024-50065-x. url: http://dx.doi.org/10.1038/s41467-024-
50065-x.

[Fow+12] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. “Sur-
face codes: Towards practical large-scale quantum computation”. In: Physical Review
A 86.3 (Sept. 2012). issn: 1094-1622. doi: 10.1103/physreva.86.032324. url: http:
//dx.doi.org/10.1103/PhysRevA.86.032324.

[Gid15a] Craig Gidney. Constructing Large Controlled Nots. https://algassert.com. 2015. url:
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled
-Nots.html.

[Gid15b] Craig Gidney. Constructing Large Increment Gates. https://algassert.com. 2015. url:
https://algassert.com/circuits/2015/06/12/Constructing-Large-Increment-
Gates.html.

[Gid17] Craig Gidney. Factoring with n+2 clean qubits and n-1 dirty qubits. 2017. doi: 10.48550/ARXIV.1706.07884.
url: https://arxiv.org/abs/1706.07884.

[Gid18] Craig Gidney. “Halving the cost of quantum addition”. In: Quantum 2 (June 2018),
p. 74. issn: 2521-327X. doi: 10.22331/q-2018-06-18-74. url: https://doi.org/10.
22331/q-2018-06-18-74.

[Jon13] Cody Jones. “Low-overhead constructions for the fault-tolerant Toffoli gate”. In: Physi-
cal Review A 87.2 (Feb. 2013). issn: 1094-1622. doi: 10.1103/physreva.87.022328. url:
http://dx.doi.org/10.1103/PhysRevA.87.022328.

[Kim+22] Isaac H. Kim, Ye-Hua Liu, Sam Pallister, William Pol, Sam Roberts, and Eunseok
Lee. “Fault-tolerant resource estimate for quantum chemical simulations: Case study
on Li-ion battery electrolyte molecules”. In: Physical Review Research 4.2 (Apr. 2022).
issn: 2643-1564. doi: 10.1103/physrevresearch.4.023019. url: http://dx.doi.org/
10.1103/PhysRevResearch.4.023019.

[Lee+21] Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R. McClean,
Nathan Wiebe, and Ryan Babbush. “Even More Efficient Quantum Computations of
Chemistry Through Tensor Hypercontraction”. In: PRX Quantum 2.3 (July 2021).
issn: 2691-3399. doi: 10.1103/prxquantum.2.030305. url: http://dx.doi.org/10.
1103/PRXQuantum.2.030305.

19

https://doi.org/10.48550/ARXIV.2406.06511
https://arxiv.org/abs/2406.06511
https://doi.org/10.1103/physrevx.8.041015
http://dx.doi.org/10.1103/PhysRevX.8.041015
http://dx.doi.org/10.1103/PhysRevX.8.041015
https://eprint.iacr.org/2024/222
https://eprint.iacr.org/2024/222
https://eprint.iacr.org/2024/222
https://doi.org/10.1073/pnas.1801723115
http://dx.doi.org/10.1073/pnas.1801723115
https://doi.org/10.1038/s41467-024-50065-x
http://dx.doi.org/10.1038/s41467-024-50065-x
http://dx.doi.org/10.1038/s41467-024-50065-x
https://doi.org/10.1103/physreva.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.html
https://algassert.com/circuits/2015/06/12/Constructing-Large-Increment-Gates.html
https://doi.org/10.48550/ARXIV.1706.07884
https://arxiv.org/abs/1706.07884
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.1103/physreva.87.022328
http://dx.doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/physrevresearch.4.023019
http://dx.doi.org/10.1103/PhysRevResearch.4.023019
http://dx.doi.org/10.1103/PhysRevResearch.4.023019
https://doi.org/10.1103/prxquantum.2.030305
http://dx.doi.org/10.1103/PRXQuantum.2.030305
http://dx.doi.org/10.1103/PRXQuantum.2.030305

[Lit19] Daniel Litinski. “A Game of Surface Codes: Large-Scale Quantum Computing with
Lattice Surgery”. In: Quantum 3 (Mar. 2019), p. 128. issn: 2521-327X. doi: 10.22331/q-
2019-03-05-128. url: http://dx.doi.org/10.22331/q-2019-03-05-128.

[Lit23] Daniel Litinski. How to compute a 256-bit elliptic curve private key with only 50 million
Toffoli gates. 2023. doi: 10.48550/ARXIV.2306.08585. url: https://arxiv.org/abs/
2306.08585.

[NZS24] Junhong Nie, Wei Zi, and Xiaoming Sun. Quantum circuit for multi-qubit Toffoli gate
with optimal resource. 2024. doi: 10.48550/ARXIV.2402.05053. url: https://arxiv.
org/abs/2402.05053.

[Rub+23] Nicholas C. Rubin, Dominic W. Berry, Fionn D. Malone, Alec F. White, Tanuj Khat-
tar, A. Eugene DePrince, Sabrina Sicolo, Michael Küehn, Michael Kaicher, Joonho Lee,
and Ryan Babbush. “Fault-Tolerant Quantum Simulation of Materials Using Bloch
Orbitals”. In: PRX Quantum 4.4 (Oct. 2023). issn: 2691-3399. doi: 10.1103/prxquan-
tum.4.040303. url: http://dx.doi.org/10.1103/PRXQuantum.4.040303.

[Rub+24] Nicholas C. Rubin, Dominic W. Berry, Alina Kononov, Fionn D. Malone, Tanuj Khat-
tar, Alec White, Joonho Lee, Hartmut Neven, Ryan Babbush, and Andrew D. Baczewski.
“Quantum computation of stopping power for inertial fusion target design”. In: Pro-
ceedings of the National Academy of Sciences 121.23 (May 2024). issn: 1091-6490. doi:
10.1073/pnas.2317772121. url: http://dx.doi.org/10.1073/pnas.2317772121.

[San+20] Yuval R. Sanders, Dominic W. Berry, Pedro C.S. Costa, Louis W. Tessler, Nathan
Wiebe, Craig Gidney, Hartmut Neven, and Ryan Babbush. “Compilation of Fault-
Tolerant Quantum Heuristics for Combinatorial Optimization”. In: PRX Quantum 1.2
(Nov. 2020). issn: 2691-3399. doi: 10.1103/prxquantum.1.020312. url: http://dx.
doi.org/10.1103/PRXQuantum.1.020312.

[Yua+23] Yewei Yuan, Chao Wang, Bei Wang, Zhao-Yun Chen, Meng-Han Dou, Yu-Chun Wu,
and Guo-Ping Guo. “An improved QFT-based quantum comparator and extended
modular arithmetic using one ancilla qubit”. In: New Journal of Physics 25.10 (Oct.
2023), p. 103011. issn: 1367-2630. doi: 10.1088/1367-2630/acfd52. url: http://dx.
doi.org/10.1088/1367-2630/acfd52.

[ZB24] Ben Zindorf and Sougato Bose. Efficient Implementation of Multi-Controlled Quantum
Gates. 2024. doi: 10.48550/ARXIV.2404.02279. url: https://arxiv.org/abs/2404.
02279.

[ZSL24] Shuchen Zhu, Aarthi Sundaram, and Guang Hao Low. Unified Architecture for a Quan-
tum Lookup Table. 2024. doi: 10.48550/ARXIV.2406.18030. url: https://arxiv.
org/abs/2406.18030.

20

https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.22331/q-2019-03-05-128
http://dx.doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.48550/ARXIV.2306.08585
https://arxiv.org/abs/2306.08585
https://arxiv.org/abs/2306.08585
https://doi.org/10.48550/ARXIV.2402.05053
https://arxiv.org/abs/2402.05053
https://arxiv.org/abs/2402.05053
https://doi.org/10.1103/prxquantum.4.040303
https://doi.org/10.1103/prxquantum.4.040303
http://dx.doi.org/10.1103/PRXQuantum.4.040303
https://doi.org/10.1073/pnas.2317772121
http://dx.doi.org/10.1073/pnas.2317772121
https://doi.org/10.1103/prxquantum.1.020312
http://dx.doi.org/10.1103/PRXQuantum.1.020312
http://dx.doi.org/10.1103/PRXQuantum.1.020312
https://doi.org/10.1088/1367-2630/acfd52
http://dx.doi.org/10.1088/1367-2630/acfd52
http://dx.doi.org/10.1088/1367-2630/acfd52
https://doi.org/10.48550/ARXIV.2404.02279
https://arxiv.org/abs/2404.02279
https://arxiv.org/abs/2404.02279
https://doi.org/10.48550/ARXIV.2406.18030
https://arxiv.org/abs/2406.18030
https://arxiv.org/abs/2406.18030

	Introduction
	Background & History
	Conditionally clean ancilla
	Laddered toggle detection when borrowing multiple dirty qubits
	Application of conditionally clean ancilla to n-bit Toffoli circuits
	n-bit Toffoli into 2n-3 Toffoli and O(n) depth using 1 clean ancilla
	n-bit Toffoli into 2n - 3 Toffoli and O(log(n)) depth using 2 clean ancilla
	n-bit Toffoli into 4n-8 Toffoli and O(n) depth using 1 dirty ancilla
	n-bit Toffoli into 4n-8 Toffoli and O(log(n)) depth using 2 dirty ancilla

	Producing/Consuming all n-bit prefix/suffix ANDs using 3n Toffoli and log*(n) clean ancilla
	n-bit Incrementer into 3n Toffoli and O(n) depth using log*(n) clean ancilla
	n-bit LessThanConst into 3n Toffoli and O(n) depth using log*(n) clean ancilla

	Constructions for Unary Iteration and QROM
	Unary Iteration as a tree traversal
	Unary iteration and QROM using conditionally clean ancillae
	Unary iteration and QROM using dirty ancilla

	Conclusion
	Contributions
	Acknowledgements

