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Quantum computers are typically presented as hav-
ing a small, fixed instruction set of single-qubit and
two-qubit quantum gates that they are able to run.
Additionally, many devices have extra constraints on
which pairs of qubits two-qubit quantum gates can be
run on. To run a quantum circuit on such a device,
provided quantum circuits must guarantee that all two-
qubit gates are between permitted pairs of qubits.

Coupling constraints are represented as connected,
undirected graphs G = (V,E) where V is a set of ver-
tices representing qubits and E is a set of unweighted
edges (v0, v1) for v0, v1 ∈ V , that define allowed two-
qubit interactions. Two-qubit quantum gates between
non-adjacent qubits can be realised by adding SWAP
gates 4 that swap the states adjacent qubits. Compiling
general circuits to fit these constraints while minimising
the number of two-qubit gates is a well studied area[5].

It has been shown that converting a quantum circuit
into a Pauli-Exponential-Clifford circuit (see section A
of the supplementary material) and then re-synthesising
it into a sequence of Clifford gates and single-qubit ro-
tation gates via a greedy search algorithm [12, 14], has
been shown to be an effective method for reducing the
number of two-qubit gates in quantum circuits. The
quantum software kit TKET [15] has an optimisation pass
GreedyPauliSimp that optimises circuits in this man-
ner.

We update the greedy search algorithm for synthesis-
ing Pauli-Exponential-Clifford circuits to only choose
two-qubit Clifford gates that respect the coupling con-
straints of a device. We modify the cost function from
counting the number of non-Identity terms in a Pauli
exponential, to counting the number of terminal nodes
and Steiner nodes in a Steiner tree. The use of Steiner
trees in architecture-aware synthesis techniques is well
established, including synthesis of phase polynomial cir-
cuits and CX circuits [8, 9].

This method uses two greedy search algorithms; one
for synthesising a series of Pauli Exponentials and one
for synthesising a Clifford operation, with algorithm de-
tails provided in the supplementary material 1 5. We
benchmark performance for a selection of Quantum Vol-
ume circuits, and for a set of small, linear reversible
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and chemistry circuits from a 2018 Qiskit Developer
challenge (referred to as "Challenge Circuits"), routed
on connectivity graphs for four IBMQ devices: 5-qubit
Quito, 7-qubit Nairobi, 16-qubit Guadalupe and 27-
qubit Mumbai.

In nearly all cases, our proposed approach, referred
to as "Architecture-Aware GreedyPauli", significantly
outperforms both the default routing available in TKET
CXMappingPass (used as the highest level of optimisa-
tion in Qiskit support in TKET) and optimising circuits
with GreedyPauliSimp followed by CXMappingPass.
Additionally, the Clifford synthesis sub-step matches
state-of-the-art performance, finding the same asymp-
totic limits in CX count [16].

Qiskit compilation shows a noticeable contrast in per-
formance between the two circuit classes, returning in
many cases the highest compiled CX count for the
"Challenge Circuits", but also returning in nearly all
cases the lowest compiled CX count for the Quantum
Volume circuits.

This is a promising performance baseline, showing
that the optimisation performance of the greedy search
algorithm used in GreedyPauliSimp can be updated ef-
fectively for compiling to connectivity graphs. However,
due to runtime overhead, benchmark circuits are lim-
ited to 8 qubits (when the device has enough qubits to
support them).

The cost function involves calculating numerous
Steiner trees when selecting Clifford gates, and finding
minimum Steiner trees is an NP-hard problem. Reduc-
ing this overhead is essential to make this technique
viable for a general-purpose quantum circuit compiler.
We are optimistic that this is achievable; by reducing
the search space and using approximate Steiner trees or
alternative cost functions during look-ahead, we aim to
maintain good performance with reduced complexity in
future iterations of this approach.
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(a) IBMQ Quito Architecture
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Figure 1: Graphs comparing default 1. TKET routing
CXMappingPass, 2. a non-architecture-aware greedy

search synthesis GreedyPauliSimp with
CXMappingPass, 3. Qiskit level 3 compilation, 4. the

proposed method, for the "Challenge Circuits" on four
connectivity graphs for IBMQ devices.
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Figure 2: Graphs comparing default 1. TKET routing
CXMappingPass, 2. a non-architecture-aware greedy

search synthesis GreedyPauliSimp with
CXMappingPass, 3. Qiskit level 3 compilation, 4. the
proposed method, for Quantum Volume circuits on

four connectivity graphs for IBMQ devices.



3

SUPPLEMENTARY MATERIAL

A. Pauli-Exponential-Clifford Circuits

A Pauli Exponential is an n-qubit operation e−iαπP̂ where P̂ =
⊗n

i=0 Pi and Pi ∈ {I,X, Y, Z} is a Pauli matrix.
We use the phrase Pauli String to refer to the string of Pauli letters P comprising the tensor product in the

exponential and we refer to the qubits with non-identity Pauli letters in a Pauli string as the support S(P ). A
Pauli exponential can be implemented as a single qubit rotation gate R{X,Y,Z}(2α) = e−iαπ{X,Y,Z}, if |S(P )| = 1
for the Pauli string P . Any quantum circuit with only quantum operations can be represented as a series of Pauli
exponentials followed by a Clifford circuit U = T.

∏k
j=0 e

−iαπj P̂j , where T represents a Clifford circuit, by applying
Clifford conjugations to Pauli exponentials. We refer to such circuits as being in Pauli-Exponential-Clifford form
[4].

We propose producing connectivity graph valid circuits from Pauli-Exponential-Clifford circuits by splitting the
problem into two sections, first solving for the non-Clifford Pauli exponentials, and second solving for the Clifford
circuit. This order is necessary as the Clifford circuit will likely be modified by the solution to the first section.

B. Architecture-Aware Construction of Pauli Exponentials

We can reduce the number of non-identity Pauli letters in a Pauli string by applying Clifford conjugations to the
term. For some Clifford operation T acting on the same qubits as the target Pauli exponential, T.e−iαπP̂=e±iαπQ̂.T ,
where Q̂ comprises a different Pauli string Q and the angle of rotation may be flipped due to a phase change of -1.
Therefore, given a circuit U =

∏k
j=0 e

−iαjπP̂j , we can produce a quantum circuit that respects some connectivity
constraints G(E, V ) by repeatedly applying Clifford circuits that both respect G and convert Pj to Qj such that
|S(Qj)| = 1.

We restrict the set of allowed Clifford operations to the nine two-qubit gates A = {e iπ
4 (I0−P0)(I1−P1), P0, P1 ∈

{X,Y, Z}} 3 as in [14]. Table I shows pairs of Pauli letters for which each Clifford is able to convert one of the
letters to an identity. By inspection, one can see that every pair of non-identity Pauli letters can be mapped to a
pair with a comprised of an Identity and a Pauli letter.

Clifford Pre Post Clifford Pre Post Clifford Pre Post

XX
XY IY

XY
XX IX

XZ
XX IX

XZ IZ XZ IZ XY IY
YX YI YY YI YZ YI
ZX ZI ZY ZI ZZ ZI

YX
XX XI

YY
XY XI

YZ
XZ XI

YY IY YX IX YX IX
YZ IZ YZ IZ YY IY
ZX ZI ZY ZI ZZ ZI

ZX
XX XI

ZY
XY XI

ZZ
XZ XI

YX YI YY YI YZ YI
ZY IY ZX IX ZX IX
ZZ IZ ZZ IZ ZY IY

Table I: For each considered two-qubit Clifford gate, this table shows which four pairs of Pauli letters will have
one letter converted to an Identity after a push through.

Without G, the operations in I are sufficient to reduce any Pauli string to a new string P such that |S(P )| = 1.
Furthermore, the two-qubit Clifford cost of a Pauli exponential with Pauli string P is straightforwardly |S(P )|−1.

With G, unless S(P ) forms a connected subgraph of the connectivity graph, Clifford gates that swap an identity
between a pair of Pauli letters need to be considered. This can be achieved by a SWAP gate 4 or by pairs of
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Figure 3: Clifford operations e
iπ
4 (I0−P0)(I1−P1) used for conjugating Pauli exponentials. Rows correspond to X, Y

and Z for P0 respectively, and columns correspond to X, Y and Z for P1 respectively. We refer to these Clifford
operations as XX, XY, XZ, YX, YY, YZ, ZX, ZY and ZZ. Note that the provided constructions are written to
display basis changes and in practice simplifications can be applied to these identities, such as by flipping the

direction of the CX gate for XZ and removing the Hadamard gates.

Clifford gates as in table II.

Pre Post Clifford Pair Pre Post Clifford Pair Pre Post Clifford Pair

IZ ZI
ZX, YZ

IZ XI
XX, YZ

IZ YI
YY, XZ

ZX, XZ XX, ZZ YY, ZZ
ZY, YZ XY, YZ YX, XZ
ZY, XZ XY, ZZ YX, ZZ

IX ZI
ZZ, XX

IX XI
XZ, YX

IX YI
YY, XX

ZZ, YX XZ, ZX YY, ZX
ZY, XX XY, YX YZ, XX
ZY, YX XY, ZX YZ, ZX

IY ZI
ZZ, XY

IY XI
XZ, YY

IY YI
YX, XY

ZZ, YY XZ, ZY YX, ZY
ZX, XY XX, YY YZ, XY
ZX, YY XX, ZY YZ, ZY

Table II: Each Pauli letter pair IX/IY/IZ can be swapped to XI/YI/ZI with four possible pairs of Clifford
operations.

To generate an accurate cost for realising a Pauli string P given G = (V,E) we use Steiner trees. Given a set of
vertices W ⊆ V , a Steiner Tree is a subgraph of G with vertices VT such that W ⊆ VT and the number of edges in
the Steiner Tree subgraph is minimised. Then, the cost of implementing P given G is |W |+ 2|VT \W | − 1, where
the nodes W are referred to as terminals and the nodes VT \W are Steiner nodes. Steiner tree’s are commonly
used in similar techniques [8, 9].

Let’s consider a brief example to explain the cost. Consider a connectivity graph corresponding to a 3x3 square
grid with V = {0, 1, 2, 3, 4, 5, 6, 7, 8} and E = {(0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5), (3, 6), (4, 7),
(5, 8), (6, 7), (7, 8)}, and a Pauli exponential with string P = I0Y1Z2I3X4I5Y6Z7Z8. Given a set of ver-
tices W = {1, 2, 4, 6, 7, 8} from S(P ), we can find the Steiner Tree as highlighted in red in figure 7a with
edges {(1, 2), (1, 4), (4, 7), (6, 7), (7, 8)}. As |VT \ W | = 0, we can reduce |S(P )| to 1 with 5 Clifford gates;
[X1Z2, Y1Z4, Y6X7, X4Y7, Y7X8] is one example that produces the string I0I1I2I3I4I5I6Z7I8, corresponding to
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Figure 4: SWAP gate construction as three CX gates.

a Pauli exponential that can be implemented with a single Rz gate.

Alternatively, consider a Pauli exponential with string P = I0Y1Z2I3I4I5Y6Z7Z8 as in 7b. With one Steiner node,
one swap between an identity and a Pauli letter will be required to reduce the support to 1, meaning 6 Clifford gates
are required: [X1Z2, Z1X4, Y1Y4, Y6X7, X4Y7, Y7X8] is one example that produces the string I0I1I2I3I4I5I6Z7I8,
similarly returning a Pauli exponential that can be implemented with a single Rz gate.

I0 Y1 Z2

I3 X4 I5

Y6 Z7 X8

Figure 5: An overlay of P = I0Y1Z2I3X4I5Y6Z7Z8 on a 3x3 Square graph, with the connected subgraph
produced by S(P ) highlighted by in red.

I0 Y1 Z2

I3 I4 I5

Y6 Z7 X8

Figure 6: An overlay of P = I0Y1Z2I3I4I5Y6Z7Z8 on a 3x3 Square graph, with a possible Steiner tree highlighted
in red.

It is clear in both examples that there are many possible minimal sequences of Clifford gates that can reduce
the support of a Pauli string to 1.

We produce architecture permitted circuits for U =
∏k

j=0 e
−iαjπP̂j with a greedy search with look-ahead [12, 13].
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Algorithm 1: Greedy synthesis of Pauli exponentials

Data: Pauli exponentials P̂, Clifford tableau T
Result: Circuit C

1 while P̂ is not empty do
2 P ← P̂[0];
3 if S(P) == 1 then
4 C.add(P );
5 P̂.pop(P );
6 continue;
7 end
8 min_pairs ← arg mina,b∈P,a̸=b dist(a, b);
9 candidates ← [] ;

10 for a, b ∈ min_pairs do
11 if dist(a,b) == 1 then
12 candidates ← candidates + [AdjacentCliffords(a,b)];
13 else
14 for c, d ∈ PertinentSwaps(a,b) do
15 candidates ← candidates + [SwapCliffords(c,d)];
16 end
17 end
18 min_gate ← Select(candidates, P̂);
19 C.add(min_gate);
20 Update(P̂, min_gate);
21 Update(T , min_gate);
22 end

AdjacentCliffords returns all Clifford gates capable of reducing two non-identity Pauli letters to a single letter,
as in I. When given a non-identity Pauli letter and an identity letter, SwapCliffords returns all Clifford gates
that can swap the identity letter as in Table II, along with the SWAP gate 4.

PertinentSwaps returns all possible edge swaps that can bring two letters closer, as in Table II.
Select evaluates a list of candidate Clifford gates against the remaining Pauli exponential. For each Clifford

gate, it calculates a weighted cost based on its impact on the remaining rotations, determined by constructing
Steiner trees. The gate with the lowest cost is selected.

Rather than limiting gate candidates to a single Pauli exponential, we can broaden our search to include all
dependency-free rotations. However, this approach risks not-terminating due to infinite loops as the minimum
pair distance may not decrease. To address this, we exclude any rotation whose overall support increases after
applying a selected gate.

C. Architecture-Aware Construction of Clifford circuits

Clifford operations in circuits are often represented by a Clifford Tableau [1], with most synthesis methods for
Clifford circuits converting into a Clifford Tableau and then synthesising a new circuit using some normal form
[3, 6, 7, 10, 11]. Often these methods proceed by updating an inverted tableau with permitted Clifford operations
until it is reduced to the identity. In our approach, instead of constructing a normal form, we reduce each qubit
to an identity sequentially, which has precedence in [2, 16].

If a Clifford operation is equivalent to the identity then the propagation of any Pauli exponential through it
will leave the Pauli exponential unchanged. If X and Z Pauli letters on a qubit are propagated to a pair of
anti-commuting Pauli letters on any qubit, then the Clifford operation is only single qubit Clifford gates and wire
swaps away from an identity.

To construct a Clifford circuit, we propagate a pair of single qubit Pauli strings, each containing a single X
Pauli and a single Z Pauli on the same qubit—throug, a reversed Clifford tableau. This generates two new Pauli
strings. We then apply Clifford operations to these new strings until they are reduced to a pair of anti-commuting
Pauli letters on the same qubit. We refer to the propagated strings as a Pauli-Propagation-Pair, a list of pairs of
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Pauli letters, where each pair is categorized as either anti-commuting (A), if the Pauli letters on the same qubit
anti-commute; commuting (C), if the Pauli letters commute; or identity (Id), if both strings are I.

As with the synthesis of Pauli exponentials, we define sets of Clifford operations to act on pairs of qubits, where
each qubit is classified as either A (anti-commuting), C (commuting), or Id (identity). These Clifford operations
are organised into performing the following actions on these pairs of qubits:

1. (C,A)→ (Id,A), for all (C,A), see III

2. (C,A)→ (A,C), for all (C,A), see IV

3. (Id, C)→ (C, Id), for all (Id, C), see II

4. (C,C)→ (C, Id), for some (C,C), see V

5. (A, Id)→ (Id,A), for all (A, Id), see 4

6. (A, Id)→ (C,A), for all (A, Id), see VI

7. (A,A)→ (C,C), for all (A,A), see VII

While the first rule would be sufficient for non-architecture-aware constructions, Clifford operations from all 6
operation types may be required to implement a connectivity graph respecting Clifford circuit.

Consider a short example to see how a pair of propagated Pauli strings can be reduced to a single anti-commuting
entry. Assume that after propagation we have a pair of Pauli strings PX = I0X1Y2X3I4I5Y6X7Z8 and PZ =
I0Y1Z2X3I4I5Y6Y7I8. Figure 7a strings overlaid on a 3x3 square grid architecture, with A vertices highlighted in
red and C vertices highlighted in blue.

One possible minimum Steiner tree is shown in figure 7b, which can be solved with 14 Clifford gates:
[X3X6,Y6Z7,Y7Z8,X4X7,Y4Y7,X4X7,X1X4,Z1Z2,Y1Y2,Y1Y4,S1,Z0X1,Z1X0,Z0X1], as in appendix B. Section E
shows a selection of the Steiner tree’s produced by this series of Clifford gates.

I0 Y1 Z2

I3 X4 I5

Y6 Z7 X8

(a) An overlay of P = I0Y1Z2I3X4I5Y6Z7Z8 on a 3x3
Square graph, with the connected subgraph produced

by S(P ) highlighted in red.

I0 Y1 Z2

I3 I4 I5

Y6 Z7 X8

(b) An overlay of P = I0Y1Z2I3I4I5Y6Z7Z8 on a 3x3
Square graph, with a possible Steiner tree highlighted

in red.

Figure 7: Comparison of the Pauli string overlays on a 3x3 square grid architecture.

For general Clifford operations we synthesise circuits using a greedy search with look-ahead as outlined in
algorithms 2-5.
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Algorithm 2: Reduce
Data: Tree s
Result: Bool if s can be reduced

1 success ← False;
2 for n ∈ s.leafs() do
3 p ← n.parent;
4 if type(n) == Id then
5 success | = True;
6 else if type(p) == A and type(n) == C then
7 success | = AC_AI(p, n);
8 else if type(p) == C and type(n) == C then

// not always possible
9 success | = CC_CI(p, n);

10 else if type(p) == Id and type(n) == C then
11 success | = IC_CI(p, n);
12 else
13 continue;
14 T .remove(n)
15 end

Algorithm 3: ExpandA
Data: Tree s, done nodes N
Result: Bool success

1 if s has no C leaves then
2 success ← False;
3 return;
4 end
5 n← s.C_leafs()[0];
6 a ← arg mina∈T,type(A)=A dist(a, n);
7 b ← arg minb∈neighbour(a) dist(b, n);
8 if type(b) == Id then
9 if b ∈ N.values() then

// if b is the destination of a previously fixed propagation we use a SWAP gate
10 success ← AI_IA(a, b);
11 N [b]← a;
12 else
13 success ← AI_CA(a, b);
14 else if type(b) == C then
15 success ← AC_CA(a, b);

Algorithm 4: ContractA
Data: Tree s

1 n← s.A_leafs()[0];
2 p ← n.parent;
3 if type(p) == A then
4 AA_CC(p, n);
5 else if type(b) == C then
6 CA_AC(p, n);
7 else
8 IA_AI(p, n);
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Algorithm 5: Clifford Synthesis
Data: Tableau T

1 N ← {};
2 while T not done do
3 r ← SelectRow(T);

// each row represents a propagation
4 s← SteinerTree(r);

// tree synthesis
5 while s.size() > 1 do
6 while Reduce(s) do
7 repeat;
8 end
9 if ExpandA(s, N) then

10 continue;
11 end
12 Contract(s);
13 end
14 N.add(s.nodes[0]);
15 end

SelectRow is performed by testing out tree synthesis for all remaining rows and then picking the cheapest.
AC_AI, CC_CI, IC_CI, AI_IA, AC_CA and AA_CC are as in 7.

D. Pair Propagation for Clifford Synthesis

We share selection of Clifford operations for constructing architecture-aware Clifford gates, as described in
Section C.

A C Clifford A C Clifford A C Clifford

XY

XX ZX

XZ

XX YX

YX

XX ZX
XI YX XI ZX XI XX
YY ZY YY YY YY ZY
YI YY YI ZY YI XY
ZZ ZZ ZZ YZ ZZ ZZ
ZI YZ ZI ZZ ZI XZ
IX XX IX XX IX YX
IY XY IY XY IY YY
IZ XZ IZ XZ IZ YZ

YZ

XX XX

ZX

XX YX

ZY

XX XX
XI ZX XI XX XI YX
YY XY YY YY YY XY
YI ZY YI XY YI YY
ZZ XZ ZZ YZ ZZ XZ
ZI ZZ ZI XZ ZI YZ
IX YX IX ZX IX ZX
IY YY IY ZY IY ZY
IZ YZ IZ ZZ IZ ZZ

Table III: For each combination of anti-commuting pair of Paulis A and commuting pair of Paulis C, shares a
Clifford operation that maps the commuting pair C to Id, or (A,C)→ (A, Id). The resulting letters can be

found from applying I.
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A C Clifford A C Clifford A C Clifford

XY

XX XY,XZ,YY,YZ

XZ

XX XY,XZ,ZY,ZZ

YX

XX XY,XZ,YY,YZ
XI XY,XZ,ZY,ZZ XI XY,XZ,YY,YZ XI YY,YZ,ZY,ZZ
YY XX,XZ,YX,YZ YY XX,XZ,ZX,ZZ YY XX,XZ,YX,YZ
YI XX,XZ,ZX,ZZ YI XX,XZ,YX,YZ YI YX,YZ,ZX,ZZ
ZZ XX,XY,YX,YY ZZ XX,XY,ZX,ZY ZZ XX,XY,YX,YY
ZI XX,XY,ZX,ZY ZI XX,XY,YX,YY ZI YX,YY,ZX,ZY
IX YY,YZ,ZY,ZZ IX YY,YZ,ZY,ZZ IX XY,XZ,ZY,ZZ
IY YX,YZ,ZX,ZZ IY YX,YZ,ZX,ZZ IY XX,XZ,ZX,ZZ
IZ YX,YY,ZX,ZY IZ YX,YY,ZX,ZY IZ XX,XY,ZX,ZY

YZ

XX YY,YZ,ZY,ZZ

ZX

XX XY,XZ,ZY,ZZ

ZY

XX YY,YZ,ZY,ZZ
XI XY,XZ,YY,YZ XI YY,YZ,ZY,ZZ XI XY,XZ,ZY,ZZ
YY YX,YZ,ZX,ZZ YY XX,XZ,ZX,ZZ YY YX,YZ,ZX,ZZ
YI XX,XZ,YX,YZ YI YX,YZ,ZX,ZZ YI XX,XZ,ZX,ZZ
ZZ YX,YY,ZX,ZY ZZ XX,XY,ZX,ZY ZZ YX,YY,ZX,ZY
ZI XX,XY,YX,YY ZI YX,YY,ZX,ZY ZI XX,XY,ZX,ZY
IX XY,XZ,ZY,ZZ IX XY,XZ,YY,YZ IX XY,XZ,YY,YZ
IY XX,XZ,ZX,ZZ IY XX,XZ,YX,YZ IY XX,XZ,YX,YZ
IZ XX,XY,ZX,ZY IZ XX,XY,YX,YY IZ XX,XY,YX,YY

Table IV: For each combination of anti-commuting pair of Paulis A and commuting pair of Paulis C, shares four
possible Clifford operations that maps A to some C and C to some A, or (C,A)→ (A,C). The resulting letters

can be found from applying I.

C C Clifford C C Clifford C C Clifford

XX
XX YX,ZX

XI
XI YX,ZX

YY
XX XX,ZX

YY YY,ZY YI YY,ZY YY XY,ZY
ZZ YZ,ZZ ZI YZ,ZZ ZZ XZ,ZZ

YI
XI XX,ZX

ZZ
XX XX,YX

ZI
XI XX,YX

YI XY,ZY YY XY,YY YI XY,Y
ZI XZ,ZZ ZZ XZ,YZ ZI XZ,YZ

IX
IX YX,ZX

IY
IX XX,ZX

IZ
IX XX,YX

IY YY,ZY IY XY,ZY IY XY,YY
IZ YZ,ZZ IZ XZ,ZZ IZ XZ,YZ

Table V: Combinations of pairs of commuting pairs of Pauli letters for which one of the provided two Clifford
operations will reduce the second commuting pair to Id, or (C,C)→ (C, Id). The resulting letters can be found

from applying I.

Clifford 0 Clifford 1 Clifford 0 Clifford 1 Clifford 0 Clifford 1 Clifford 0 Clifford 1
XX YY XX YZ XX ZY XX ZZ
XY YX XY YZ XY ZX XY ZZ
XZ YX XZ YY XZ ZX XZ ZY
YX XY YX XZ YX ZY YX ZZ
YY XX YY XZ YY ZX YY ZZ
YZ XX YZ XY YZ ZX YZ ZY
ZX XY ZX XZ ZX YY ZX YZ
ZY XX ZY XZ ZY YX ZY YZ
ZZ XX ZZ XY ZZ YX ZZ YY

Table VI: Any of these pairs of Clifford gates applied in sequence will convert (A, Id)→ (C,A). The resulting
letters can be found from applying II.
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A A Clifford A A Clifford A A Clifford

XY

XY XY,XZ,YX,YZ,ZX,ZY

XZ

XY XY,XZ,YX,YY,ZX,ZZ

YX

XY XX,XZ,YY,YZ,ZX,ZY
XZ XY,XZ,YX,YY,ZX,ZZ XZ XY,XZ,YX,YZ,ZX,ZY XZ XX,XY,YY,YZ,ZX,ZZ
YX XX,XZ,YY,YZ,ZX,ZY YX XX,XZ,YX,YY,ZY,ZZ YX XY,XZ,YX,YZ,ZX,ZY
YZ XX,XZ,YX,YY,ZY,ZZ YZ XX,XZ,YY,YZ,ZX,ZY YZ XX,XY,YX,YZ,ZY,ZZ
ZX XX,XY,YY,YZ,ZX,ZZ ZX XX,XY,YX,YZ,ZY,ZZ ZX XY,XZ,YX,YY,ZX,ZZ
ZY XX,XY,YX,YZ,ZY,ZZ ZY XX,XY,YY,YZ,ZX,ZZ ZY XX,XZ,YX,YY,ZY,ZZ

YZ

XY XX,XY,YY,YZ,ZX,ZZ

ZX

XY XX,XZ,YX,YY,ZY,ZZ

ZY

XY XX,XY,YX,YZ,ZY,ZZ
XZ XX,XZ,YY,YZ,ZX,ZY XZ XX,XY,YX,YZ,ZY,ZZ XZ XX,XZ,YX,YY,ZY,ZZ
YX XX,XY,YX,YZ,ZY,ZZ YX XY,XZ,YX,YY,ZX,ZZ YX XX,XY,YY,YZ,ZX,ZZ
YZ XY,XZ,YX,YZ,ZX,ZY YZ XX,XY,YY,YZ,ZX,ZZ YZ XY,XZ,YX,YY,ZX,ZZ
ZX XX,XZ,YX,YY,ZY,ZZ ZX XY,XZ,YX,YZ,ZX,ZY ZX XX,XZ,YY,YZ,ZX,ZY
ZY XY,XZ,YX,YY,ZX,ZZ ZY XX,XZ,YY,YZ,ZX,ZY ZY XY,XZ,YX,YZ,ZX,ZY

Table VII: For each combination of pair of anti-commuting pair of Paulis (A,A) shares six possible Clifford
operations that maps (A,A)→ (C,C). The resulting letters can be found from applying I.
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E. Clifford Synthesis Example

We share a selection of Steiner tree diagrams showing how reducing a pair of Pauli strings produced by single
X and Z propagation to the identity can be completed using table look ups.

X1/Y1 Y2/Z2

I4/I4

Y6/Y6 X7/Y7 Z8/I8

Figure 8: A possible Steiner tree from the graph after applying X3X6.

X1/Y1 Y2/Z2

I4/I4

X7/Y7 Z8/I8

Figure 9: Steiner tree after applying Y6Y7.

X1/Y1 Y2/Z2

I4/I4

X7/Y7

Figure 10: Steiner tree after applying Y7Y8.
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X1/Y1 Y2/Z2

Y4/X4

X7/I7

Figure 11: Steiner tree after applying X4X7 and Y4Y7.

X1/Y1 Y2/Z2

Y4/X4

Figure 12: Steiner tree after applying X4X7.

I1/Y1 Y2/Z2

Y4/I4

Figure 13: Steiner tree after applying X1X4.

Z1/Y1 Y2/I2

Y4/I4

Figure 14: Steiner tree after applying Z1Z2.
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