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Abstract. A new circuit synthesis approach, called probabilistic synthesis, samples a gate sequence to
suppress the approximate error for realizing a target unitary transformation or preparing a target pure
state. When we consider the fault-tolerant circuit synthesis, the description of the approximation error
caused by each gate sequence is completely known. By exploiting this description, several probabilistic
synthesis algorithms have been developed to reduce the approximation error for specific types of target
unitary transformations; however, their fundamental limitations were unknown. In our research, we have
revealed the tight inequalities that govern the error reduction achieved by the optimal probabilistic synthesis
for realizing any unitary transformations and preparing pure states. In contrast to the existing results, our
result shows that the approximation error can be reduced not only quadratically, but also proportionally to
1/d for some target unitary transformations acting on d-dimensional Hilbert space. From a computational
point of view, we have shown that an optimal probabilistic synthesis algorithm can be constructed based on
a semidefinite program (SDP). We have also developed a technique to exponentially reduce the running time
of the SDP by exploiting the spherical nature of unitary transformations and pure states. As a result, we
have constructed efficient probabilistic synthesis algorithms for realizing arbitrary unitary transformations
and preparing pure states, rigorously estimated their time complexity, and demonstrated their performance
through numerical experiments.
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1 Background

To realize information processing in a gate model quan-
tum computer, we need to prepare an initial state and
perform unitary transformations on a fixed-size system
with the desired accuracy. This is possible by exploiting
quantum error correction [1] or the nature of the system
[2]. These techniques allow for fault-tolerant implemen-
tation of a finite gate set, such as {H,T,CNOT}, with
negligible implementation errors. However, this requires
us to prepare a target pure state ϕ and realize a target
unitary transformation Υ using a circuit formed from the
finite gate set. As a result of the discretization, we can
only prepare an approximated pure state ϕ̂ or realize an
approximated unitary transformation Υ̂ in general.
To suppress the effect of the overhead caused by the

fault-tolerant implementation of each gate, various syn-
thesis algorithms [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
have been proposed for minimizing the error or the circuit
size. Following the celebrated Solovay-Kitaev algorithm
[3], the final goal of conventional synthesis algorithms
is to deterministically find one of the best circuits for
the approximate realization of a unitary transformation
or preparation of a pure state. Thus, the minimum ap-
proximation error obtained by such deterministic unitary

(or state) synthesis is given by minx∈X
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
(or

minx∈X

∥∥∥ϕ− ϕ̂x

∥∥∥
tr
), where X is the label set of unitary

transformations (or pure states) realized (or prepared) by
circuits with a certain cost, e.g., the circuit size, depth,
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or the number of T gates.
While it makes sense to approximate a target uni-

tary transformation (or pure state) by utilizing an ap-
proximated unitary (or pure state) generated by a sin-
gle circuit, a recently proposed approach called proba-
bilistic synthesis probabilistically samples a circuit for
the approximation. Suppose that the probabilistic al-
gorithm independently samples a circuit Cx implement-
ing Υ̂x (or preparing ϕ̂x) in accordance with a proba-
bility distribution p(x) each time Υ (or ϕ) is required
in quantum information processing. Then, each realized
physical transformation (or prepared state) is described

by
∑

x p(x)Υ̂x (or
∑

x p(x)ϕ̂x). This can be interpreted
as the transition from coherent errors to incoherent er-
rors [16, 17, 18], and recent studies have experimentally
demonstrated that this transition reduces the approxi-
mation error of pure states [19]. Moreover, Hastings [16],
Campbell [20] and Vadym et al. [21] constructed synthe-
sis algorithms that reduce the approximation error of uni-

tary transformations into 1
2

∥∥∥Υ−
∑

x p(x)Υ̂x

∥∥∥
⋄
= O(ϵ2)

by choosing p(x) appropriately, where {Υ̂x}x causes the

worst approximation error ϵ := maxΥ minx
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄

if the deterministic synthesis is used. It is important to
note that the probabilistic synthesis does not need mul-
tiple executions of Cx for a single realization of Υ (or a
single preparation of ϕ), unlike quantum error mitigation
[22]. This is because the reduction of the diamond norm
guarantees that the probability distribution of the out-
puts of a quantum information processing task becomes



closer to the ideal one with just a single sample of Cx.
Despite its potential in a wide range of ap-

plications, the limitation of probabilistic synthe-
sis, especially the minimum approximation error

minp
1
2

∥∥∥Υ−
∑

x p(x)Υ̂x

∥∥∥
⋄
(or minp

∥∥∥ϕ−
∑

x p(x)ϕ̂x

∥∥∥
tr
),

remains unknown, nor is it clear how to find the opti-
mal probability distribution p. While Campbell [20] has
demonstrated that the approximation error can be re-
duced to 10ϵ2 using probabilistic synthesis for a small ϵ
for any target unitary transformation, it has been shown
that it can be reduced to ϵ2 for a unitary transformation
corresponding to an axial rotation [21]. These results in-
dicate that the synthesis algorithm for general unitary
transformations [20] is not optimal. While a few ana-
lytical results about the minimum approximation error
are obtained for the case of a qubit transformation [23]
or state [24, 25, 26] in the context of the optimal con-
vex approximation of a quantum transformation or state,
minimax optimization to compute the minimum approx-
imation error makes analyses quite difficult in general.
Note that the result of optimal probabilistic unitary

synthesis does not contain that of state synthesis, and
vice versa. This is because the generated state in state
synthesis is obtained by applying a unitary transforma-
tion to a fixed input state |0⟩ while the approximation er-
ror in unitary synthesis is quantified for the worst input
state. Moreover, a target state could be approximated
by probabilistically mixing two unitary transformations
whose behaviors are totally different, except for |0⟩.

2 Our contributions

Before presenting our results, we provide intuitive ex-
amples demonstrating the capability of probabilistic syn-
thesis in Fig. 1. As a generalization of the qubit exam-
ples, we obtain the fundamental relationship between the
minimum approximation errors obtained by the deter-
ministic synthesis and the probabilistic one:

Theorem 1 (simplified version) [27, Theorem 1]

For any subset {ϕ̂x}x∈X of pure states in a finite-
dimensional Hilbert space, it holds that

max
ϕ

min
p

∥∥∥∥∥ϕ−
∑
x∈X

p(x)ϕ̂x

∥∥∥∥∥
tr

= max
ϕ

min
x∈X

∥∥∥ϕ− ϕ̂x

∥∥∥2
tr
,

(1)
where the maximization of ϕ is taken over the set of pure
states.

This theorem compares the worst approximation errors
occurring when one synthesizes the target state ϕ that
is most difficult to approximate by using {ϕ̂x}x∈X . It
implies that the optimal probabilistic synthesis always
quadratically reduces the worst approximation error,
moreover, it is impossible to further reduce the approxi-
mation error.
In many cases, there is no need to synthesize all possi-

ble pure states. Instead, it is more useful to understand
the limitations of probabilistic synthesis when a target
state is chosen from a subset SG of pure states. As shown

(a) (b)

Figure 1: Quadratic reduction of the approximation er-
ror by using probabilistic synthesis. We assume that
we can exactly generate an eigenstate ϕ̂x of the Pauli
operators, represented by the six extreme points of
the octahedron. We represent the Bloch sphere by
a sphere with radius 1

2 , where the trace distance be-
tween two quantum states equals the Euclidean distance
between the corresponding points. (a) We can com-

pute minp

∥∥∥ϕ−
∑

x p(x)ϕ̂x

∥∥∥
tr

= ϵ2 = 1
2
√
3

(√
3− 1

)
and

minx

∥∥∥ϕ− ϕ̂x

∥∥∥
tr

= ϵ, where ϕ is the furthest state from

{ϕ̂x}6x=1, represented as a large red point. (b) Sup-
pose that the target state is chosen from SG := {ϕ :
|ϕ⟩ = cos t|0⟩ + sin t|1⟩, t ∈ R}, represented by a merid-

ian. We can compute minp

∥∥∥ϕ−
∑

x p(x)ϕ̂x

∥∥∥
tr

= ϵ̃2 =

1
2

(
1− 1√

2

)
and minx

∥∥∥ϕ− ϕ̂x

∥∥∥
tr
= ϵ̃, where ϕ is the fur-

thest state in SG from {ϕ̂x}6x=1, represented as a large
red point.

in Fig. 1(b), we can also anticipate the quadratic error re-
duction in this scenario. This expectation is confirmed in
the comprehensive version of Theorem 1, which includes
the case of Fig. 1(b).
In the case of unitary synthesis, we obtain the following

theorem.

Theorem 2 (simplified version) [28, Theorem 4.3]
For an integer d ≥ 2 specified below, let Υ and

{Υ̂x}x∈X be a target unitary transformation and a fi-
nite set of unitary transformations on Cd, respectively.
It then holds that

4δ

d

(
1− δ

d

)
≤ max

Υ
min
p

1

2

∥∥∥∥∥Υ−
∑
x∈X

p(x)Υ̂x

∥∥∥∥∥
⋄

≤ ϵ2

with

{
δ = 1−

√
1− ϵ2 and

ϵ = maxΥ minx∈X
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
.

(2)

This theorem provides bounds on the worst approxima-
tion error caused when one probabilistically synthesizes
the target unitary that is most difficult to approximate.
The gap between the upper and lower bounds exists if
and only if d ≥ 3. We can show that the gap is in-
evitable by constructing {Υ̂x}x for achieving the upper
bound and that for achieving the lower bound for any d
and ϵ. These examples show that Ineqs. (2) are tight.



While the upper bound in this theorem is essentially the
same as Theorem 1, the lower bound is totally different.
We can easily verify that 4δ

d

(
1− δ

d

)
≃ 2

dϵ
2 for small ϵ.

This demonstrates that the existing probabilistic synthe-
sis algorithms [16, 20, 21] are far from optimal since the
approximation error can be reduced not only quadrati-
cally, but also proportionally to 1/d by the optimal syn-
thesis for some target unitary transformations.
As a sharper lower bound on the approximation er-

ror attained by probabilistic synthesis, we can use the
following inequality

min
p

1

2

∥∥∥∥∥Υ−
∑
x

p(x)Υ̂x

∥∥∥∥∥
⋄

≥ 1− 1

d2
max
x∈X

∣∣∣tr [U†Ûx

]∣∣∣2
(3)

derived in the proof of Theorem 2, where U (or Ûx) rep-
resents a unitary operator realizing Υ (or Υ̂x). This in-
equality is shaper than the lower bound in Ineqs. (2) since
the latter is derived by using the former.
Note that an equivalent expression of this inequality is

given by slightly modifying the result [29, Proposition 9]
of Wallman et al. as follows:

min
p

1

2

∥∥∥∥∥Υ−
∑
x

p(x)Υ̂x

∥∥∥∥∥
⋄

≥ min
x∈X

d+ 1

d
r(Υ−1 ◦ Υ̂x), (4)

where r(E) := 1 −
∫
dϕtr [E(ϕ)ϕ] represents an average

gate infidelity of a CPTP mapping E . The equivalence
between Ineq. (3) and Ineq. (4) can be verified by a
straightforward calculation as provided in Appendix A.
Thus, in order to achieve large error reduction, the av-
erage gate infidelity of Υ−1 ◦ Υ̂x must be small for some
x ∈ X.
The example below highlights the difference between

the lower bounds in Ineq. (2) and Ineq. (3). Suppose the
eigenvalues of U†Ûx consist of eiϵ and e−iϵ with small ϵ.

We find that 1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
≃ ϵ. Thus, Ineq. (2) implies

that the approximation error is lower bounded by ≃ 2
dϵ

2

(regardless of the degeneracy of the eigenvalues). In con-
trast, Ineq. (3) implies that the approximation error is
lower bounded by ≃ 4n+n−

d2 ϵ2, where n+ and n− rep-
resent the degeneracy of eiϵ and e−iϵ, respectively. This
indicates that achieving large error reduction requires bi-
ased degeneracy. This example and the upper bound in
Ineq. (2) demonstrate that the average gate infidelity of

Υ−1 ◦ Υ̂x and the diamond norm 1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
serve as

complementary measures for estimating the approxima-
tion error attained by the optimal probabilistic synthesis.
From a computational point of view, we show that the

optimal probability distribution {p(x)}x∈X for approxi-
mating Υ (or ϕ) can be computed by the semidefinite pro-

gram (SDP) when {Υ̂x}x∈X (or {ϕ̂x}x∈X) realized by us-
ing a gate sequence is given. (This set is computable with
certain deterministic synthesis algorithms.) The ellipsoid
method guarantees that the optimal {p(x)}x∈X minimiz-

ing 1
2

∥∥∥Υ−
∑

x p(x)Υ̂x

∥∥∥
⋄
(or

∥∥∥ϕ−
∑

x p(x)ϕ̂x

∥∥∥
tr
) can be

computed in poly (|X|d)-time. However, as explained
later, this running time is too long to construct an ef-
ficient synthesis algorithm. We resolve this problem by

proving the following lemma for reducing the running
time of the SDP.

Lemma 3 (simplified version) [28, Lemma 5.3]
When a set of single-qubit unitary transfor-

mations {Υ̂x}x∈X forms an ϵ-covering, i.e.,

maxΥ minx∈X
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
≤ ϵ, then

min
p

∥∥∥∥∥Υ−
∑
x∈X

p(x)Υ̂x

∥∥∥∥∥
⋄

= min
p̂

∥∥∥∥∥∥Υ−
∑
x∈X̂

p̂(x)Υ̂x

∥∥∥∥∥∥
⋄

(5)

holds, where X̂ :=
{
x ∈ X : 1

2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
≤ 2ϵ

}
.

We can prove the similar lemma for the case of convex
approximation of pure states [27, Lemma 4]. Note that
the lemma for states holds for any dimensional Hilbert
space, while we have only proven Lemma 3 for single-
qubit unitary transformations.
In the Introduction, it is mentioned that X is the la-

bel set of unitary transformations (or pure states) that
can be achieved by circuits with a certain cost. If we
consider the cost as the number of T gates (known as
T -count), then the size of X exponentially grows with re-
spect to the T -count. When we aim to synthesize a single-
qubit unitary transformation within an error of ϵ, it has
been established that the T -count grows as O

(
log

(
1
ϵ

))
[30]. These imply that {Υ̂x}x∈X forms an ϵ-covering
when |X| = poly

(
1
ϵ

)
. In this case, the running time

of our SDP to compute the optimal {p(x)}x∈X becomes
poly

(
1
ϵ

)
, which is not efficient as a synthesis algorithm.

However, Lemma 3 ensures that we can confine X to X̂
in our SDP without increasing the approximation error.
Since |X̂| is typically upper bounded by a constant inde-
pendent of ϵ, the running time of this modified SDP is
significantly reduced. Moreover, the quadratic error re-
duction is guaranteed due to Theorem 2 since {Υ̂x}x∈X

forms an ϵ-covering.
Based on this modified SDP, we construct a probabilis-

tic synthesis algorithm for unitary transformations in the
following theorems:

Theorem 4 (informal version) [28, Theorem 5.4]
For a given gate set, there exists a probabilistic synthe-

sis algorithm for a single-qubit unitary with
INPUT: a target single-qubit unitary Υ and target ap-

proximation error ϵ ∈ (0, 1)
OUTPUT: a gate sequence implementing a single-qubit

unitary Υ̂x sampled from a set {Υ̂x}x in accordance with
probability distribution p̂(x).
such that the algorithm satisfies the following properties:

• Efficiency: The algorithm calls a deterministic syn-
thesis algorithm constant times and the whole run-
ning time is polylog

(
1
ϵ

)
,

• Quadratic improvement: The approximation er-

ror 1
2

∥∥∥Υ−
∑

x p̂(x)Υ̂x

∥∥∥
⋄
obtained with this algo-

rithm is upper bounded by ϵ2, whereas the error



minx
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
obtained by deterministic syn-

thesis using the unitaries in {Υ̂x}x is upper bounded
by ϵ.

It is important to highlight that the algorithm in this
theorem works for any dimensional unitary transforma-
tions with the same guarantee of efficiency and quadratic
error reduction if we can prove Lemma 3 for such unitary
transformations. In the next subsection, we perform nu-
merical experiments to support that Lemma 3 holds for
higher dimensional unitary transformations.
In the case of state synthesis, we construct a similar al-

gorithm that is applicable to any dimensional pure states
and satisfies the same two properties as the unitary syn-
thesis algorithm [27, Theorem 2]. (In the case of state
synthesis, the second property is measured by the trace
distance.) Moreover, it can be extended into the case
when a target pure state is restricted on SG, as shown in
Fig. 1 (b).

2.1 Numerical experiments

First, we show how the probabilistic synthesis algo-
rithm, as provided in the state version of Theorem 4,
can reduce the T -count through a numerical experiment.
We select a target state ϕ from SG = {ϕ ∈ P

(
C2

)
:

|ϕ⟩ = cos t|0⟩ + sin t|1⟩, t ∈ R}, as shown in Fig. 1(b).
As demonstrated in Fig. 2, our probabilistic synthesis al-
gorithm reduces the approximation error quadratically,
consequently halving the T -count needed to achieve a
certain approximation error.
Secondly, we numerically support that Lemma 3 holds

for higher dimensional unitary transformations. In the
following numerical experiment, we first construct ϵ-
coverings {Υ̂x}x∈X of d-dimensional unitary transforma-
tions by randomly choosing |X| = 105 and |X| = 107

unitary operators for d = 2 and d = 4, respectively. We
interpret {Υ̂x}x∈X as the set of available unitary trans-
formations in probabilistic and deterministic approxima-
tion.
Next, we randomly choose a target unitary transfor-

mation Υ and compute the approximation error ϵΥ :=

minx∈X
1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
attained by the deterministic syn-

thesis. We define the approximation error attained
by probabilistically mixing restricted available unitary
transformations as

ϵprobΥ (ϵ′) := min
p

1

2

∥∥∥∥∥∥Υ−
∑

x∈X̂(ϵ′)

p(x)Υ̂x

∥∥∥∥∥∥
⋄

(6)

where X̂(ϵ′) := {x ∈ X : 1
2

∥∥∥Υ− Υ̂x

∥∥∥
⋄
≤ ϵ′}. Note that

ϵprobΥ (ϵ′) is a monotonically decreasing function. More-
over, if Lemma 3 holds for any dimensional unitary trans-
formations, ϵprobΥ (2ϵ) = ϵprobΥ (1).

In Fig. 3, we draw the graphs of ϵprobΥ (ϵ′) for 10 ran-
domly chosen Υ by using different colors corresponding
to Υ. We can observe that ϵprobΥ (ϵ′) is saturated when

ϵ′ ≥ 1.4ϵ and ϵprobΥ is comparable or smaller than ϵ2Υ

T-count

deterministic synthesis

probabilistic synthesis
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Figure 2: Relationship between T -count and
the approximation error for synthesizing |ϕ⟩ =
cos t|0⟩ + sin t|1⟩ with t = 1. For each target approx-
imation error, we run the Ross-Selinger algorithm [30]
to obtain a gate sequence to approximate ϕ. The blue
dashed line interpolates points, each of which represents
a target approximation error and the T -count of the gate
sequence. The actual approximation error and the T -
count achieved by the gate sequence are plotted by blue
dots. Note that both the target and actual approxima-
tion errors are represented by ϵ. For each of the target
approximation errors, we run the probabilistic synthe-
sis algorithm and obtain a list of six gate sequences to
be probabilistically sampled. The purple dashed line in-
terpolates points, each of which represents a target ap-
proximation error and the maximum T -count of gate se-
quences in the list. The actual approximation error and
the maximum T -count achieved by optimally mixing the
gate sequence are plotted by purple dots.

since
log(ϵprobΥ (ϵ′))

log(ϵΥ) ≥ 2 ⇔ ϵprobΥ (ϵ′) ≤ ϵ2Υ. Note that some

instances satisfying ϵprobΥ (ϵ′) > ϵ2Υ does not violate the
right inequality of Theorem 2 since ϵΥ ≤ maxΥ ϵΥ = ϵ.

3 Technical Outline

In the proof of Theorem 1, we analyze the minimum
approximation error

min
p

∥∥∥∥∥ρ−∑
x

p(x)ρ̂x

∥∥∥∥∥
tr

= min
p

max
0≤M≤I

tr

[
M(ρ−

∑
x

p(x)ρ̂x)

]
(7)

for general mixed states ρ and ρx, which contains min-
imax optimization by definition. The main tool for the
analysis is the strong duality of semidefinite program-
ming. This enables us to formulate the minimum ap-
proximation error as an SDP. This analysis establishes a
general lemma [27, Lemma 3] about the optimal convex
approximation of a quantum state by using a restricted
subset of states [24, 25, 26]. While the optimal convex
approximation and state synthesis have been studied in
different contexts, our lemma has made an important
contribution to both topics. First, it has revealed the
tight inequalities on the optimal approximation error in
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Figure 3: The comparison between the approximation er-
ror ϵprobΥ (ϵ′) attained by the probabilistic approximation
and that ϵΥ attained by the deterministic approximation
for 10 randomly sampled target unitary transformations
Υ. For both approximations, we use the set of available
unitary transformations induced by an ϵ-covering of the
set U(d) of d-dimensional unitary operators.

probabilistic synthesis as shown in Theorem 1. Secondly,
it is applicable to compute a resource measure in convex
resource theories [31, 32, 33] such as the resource theory
of entanglement and coherence, as shown in [27].
Such reformulation based on an SDP becomes more

complicated but also crucial in the proof of Theorem 2.
In this case, we construct an SDP to compute the min-
imum approximation error minp ∥A −

∑
x p(x)Bx∥⋄ for

any CPTP mappingsA and Bx. In this research, we focus
on the case when both A and Bx are unitary transforma-
tions. However, an SDP for general CPTP mappings is
valuable for optimizing probabilistic synthesis including
measurement feedbacks [34, 21, 35]. Additionally, such
an SDP might be beneficial for improving the simulation
of non-unitary dynamics.
As preiously mentioned, Lemma 3 is crucial for con-

structing efficient synthesis algorithms. This property
can be intuitively understood by using the examples
shown in Fig. 1. If the goal is to optimally approximate a

target state ϕ depicted by the red point in (a) (or (b)), it
is sufficient to mix three (or two) Pauli eigenstates that
are 2ϵ (or 2ϵ̃) close to ϕ. As suggested by this example,
the spherical nature of the set of pure states with respect
to the trace distance is essential. For the case of pure
states, we can prove this property for any dimensional
pure states.

However, in the case of unitary transformation, the
metric space induced by the diamond norm is more com-
plicated. We have only succeeded in proving this prop-
erty for single-qubit unitary transformations by exploit-
ing the magic basis [36] representation of single-qubit
unitary operators. The magic basis representation en-
ables us to embed the metric space of single-qubit uni-
tary transformations into that of S3 with respect to the
angle. While numerical experiments indicate the same
fact holds for qudit unitary transformations, the rigor-
ous proof is a subject for future work.
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A Proof

In this section, we show the equivalence between Ineq. (3) and Ineq. (4). Concretely we show

1− 1

d2

∣∣∣tr [U†Ûx

]∣∣∣2 =
d+ 1

d
r(Υ−1 ◦ Υ̂x), (8)

where U (or Ûx) represents a unitary operator realizing Υ (or Υ̂x) and r(E) := 1−
∫
dϕtr [E(ϕ)ϕ] represents an average

gate infidelity of a CPTP mapping E .
Proof. By straightforward calculation, we obtain

r(Υ−1 ◦ Υ̂x) = 1−
∫

dϕtr
[
U†Ûxϕ(U

†Ûx)
†ϕ

]
(9)

= 1−
∫

dϕtr
[
((U†Ûx)⊗ (U†Ûx)

†)(ϕ⊗ ϕ)SWAP
]

(10)

= 1− 1

d(d+ 1)
tr
[
((U†Ûx)⊗ (U†Ûx)

†)(I+ SWAP )SWAP
]

(11)

= 1− 1

d(d+ 1)

(
d+

∣∣∣tr [U†Ûx

]∣∣∣2) (12)

=
d

d+ 1

(
1− 1

d2

∣∣∣tr [U†Ûx

]∣∣∣2) , (13)

where we use tr [(A⊗B)SWAP ] = tr [AB] in the second and fourth equality. This completes the proof. □


