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Abstract—In this work-in-progress, we address the challenge of
optimizing quantum circuit compilation for neutral atom-based
quantum computers by proposing a novel cross-compilation
scheme that integrates ZX-circuit extraction and hardware map-
ping processes. Leveraging ZX-calculus, our approach enables a
more cohesive and informed decision-making process by allowing
the extraction algorithm to generate multiple candidate circuits,
which are then evaluated by the mapping algorithm. This
iterative feedback loop ensures that the extraction paths are
optimized according to the hardware’s current configuration
and physical parameters, potentially leading to improvements in
compilation efficiency and hardware utilization. We present the
fundamental idea and illustrate and discuss potential compilation
improvements. This work-in-progress lays the idea for novel ZX-
based quantum circuit compilation and offers a blueprint for
adapting the cross-compilation approach to other extraction and
mapping algorithms and hardware platforms.

I. INTRODUCTION

Executing quantum algorithms on real quantum hardware
necessitates several preprocessing steps to translate general
quantum operations into an executable form. Given the current
limitations in qubit connectivity and error rates, these quantum
circuits must be optimized for specific hardware architectures
to achieve optimal results. This process, known as compilation,
includes circuit synthesis, transpilation, and mapping/routing,
with various algorithms and techniques available for each step
and hardware type.

Typically, these compilation steps are performed indepen-
dently, with the output of one step serving as the input for
the next. For instance, Qiskit [1] offers a set of transpilation
and mapping algorithms to optimize quantum circuits for
IBM’s hardware. However, this sequential approach can yield
suboptimal results, as the output of one step may not be ideal
for the subsequent step.

Commonly used, ZX-calculus has established itself as a
powerful tool for quantum circuit transpilation and opti-
mization. It involves converting a quantum circuit into a
ZX-diagram, simplifying it using diagrammatic rules, and
then converting it back into a quantum circuit through circuit
extraction.

In this work-in-progress, we propose a novel approach to
quantum circuit compilation based on ZX-calculus, which
combines the circuit extraction and mapping steps into a pro-
cess we term cross-compilation. This method communicates
between the extraction and mapping algorithms, selecting the
best extraction steps iteratively to construct a fully mapped
quantum circuit that meets hardware constraints and is opti-
mized for the given parameters.

We discuss the underlying idea and illustrate the potential
of this approach by applying it to the compilation of quantum
circuits for neutral atom quantum computers. Specifically, the
idea is based on combining an extended version of the ZX
strategy of diagram simplification and extraction algorithm [2],
[3] that supports multi-controlled phase gates [4] and the
hybrid mapping algorithm from [5], which handles both SWAP
gate insertion and shuttling operations available on neutral
atom hardware.

The concept of cross-compilation is generalizable to other
ZX extraction methods [6], mapping strategies, and quan-
tum computing platforms such as superconducting qubits or
trapped ions. Furthermore, we plan to publish the full code as
open-source software in the Munich Quantum Toolkit [7], pro-
viding a blueprint for implementing similar cross-compilation
schemes for various hardware.

The remainder of this paper is structured as follows: In
Sec. II, we provide an overview of ZX-calculus and the
extraction of quantum circuits from ZX-diagrams. Sec. III
introduces the neutral atom quantum computing platform and
the corresponding mapping problem. Sec. IV discusses the
issue of suboptimal compilation due to the independent use of
extraction and mapping algorithms, followed by an overview
of the proposed solution in Sec. V. In Sec. VI, we briefly dis-
cuss the idea and its potential to improve existing compilation
strategies. Finally, we conclude the work in Sec. VII.

II. ZX CIRCUIT EXTRACTION

The following section gives a brief overview of the ZX-
calculus and the extraction of quantum circuits from graph-like
ZX-diagrams.
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Figure 1. Definition of Z-spiders and X-spiders, the identity and the hadamard wire, and two of the ZX-calculus rules, namely the fusion rule (f) and the
Hadamard rule (h).
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Figure 2. Example of a two-qubit Grover search circuit which is translated first to a ZX-diagram and then converted to a graph-like ZX-diagram using the
rules from the ZX-calculus.

A. ZX-Calculus

ZX-calculus is a diagrammatic language for reasoning about
linear maps in quantum computing where nodes (spiders) and
edges (wires) form an undirected graph called a ZX-diagram.
There are two types of spiders: green Z-spiders and red X-
spiders. Spiders can be parametrized with an angle α ∈ [0, 2π)
and correspond to two-dimensional matrices in Hilbert space
with the definition given in Figure 1. Spiders can have any
number of ingoing and outgoing wires. We can compose
two diagrams either horizontally by joining the outputs of
one diagram with the inputs of the other (denoted by ◦), or
vertically by placing them side by side (denoted by ⊗). This
corresponds to the known dot and tensor product in Hilbert
space. For convenience, we distinguish between two types of
wires: Normal wires, representing the identity, and Hadamard
wires, representing the Hadamard matrix. Wires entering the
diagram from the left are called input wires, with the adjacent
spiders defined as inputs I . Wires exiting to the right are called
output wires, with adjacent spiders defined as outputs O.

Example 1. A spider with two wires (incoming and outgoing)
corresponds to the following single-qubit gates: For α = 0
the Z-spider corresponds to the identity matrix and the X-
spider corresponds to the Hadamard matrix. For α = π the
Z-spider corresponds to the Pauli-Z matrix and the X-spider
corresponds to the Pauli-X matrix. ※

As ZX-diagrams represent linear maps, they constitute a
graphical language for quantum circuits. This means any quan-
tum circuit can be represented as a ZX-diagram by replacing
gates with equivalent diagrams. The ZX-calculus provides a
set of rules to manipulate ZX-diagrams without changing the
linear map, which can be used to simplify the diagram and
possibly the underlying quantum circuit.

Example 2. In Figure 2 a two-qubit Grover search circuit

is translated to a ZX-diagram. This is done by replacing
the above-mentioned single-qubit gates and replacing the
Hadamard gate with Hadamard wires. The two-qubit gates are
also replaced by their ZX-calculus counterparts. ※

The fusion rule (f ) allows merging spiders of the same
color if they are connected by at least one normal wire, and
(h) allows changing the colors of spiders by flipping normal
and Hadamard wires. All rules hold in both directions and are
also valid with interchanged colors, so we can also split up
spiders with (f ). There exists a complete graphical rule set for
transforming ZX-diagrams [8].

B. Graph-like ZX-diagrams

In this work, we consider the class of graph-like ZX-
diagrams as introduced in [2], which allow us to represent
any quantum computation as a graph of parametrized green
Z-spiders and Hadamard wires. Formally, a ZX-diagram is
graph-like iff:

1) All spiders are Z-spiders,
2) All wires between spiders are Hadamard wires,
3) There are no parallel Hadamard wires or self-loops,
4) Every Z-spider is connected to at most one input or one

output, and
5) Every input or output is connected to a Z-spider.

One can transform any ZX-diagram into an equivalent graph-
like ZX-diagram by repeatedly applying standard ZX-rules [2].

Example 3. The last step in Figure 2 shows the graph-like
ZX-diagram of the two-qubit Grover search circuit. ※

The graph-like ZX-diagram can be used to perform diagram
simplifications and optimizations [2]. In addition to the stan-
dard ZX-rules, this includes techniques such as local com-
plementation, pivoting, and phase gadget elimination where
the latter was introduced in [3]. These techniques are already
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Figure 3. Basic circuit extraction from a graph-like ZX-diagram.

implemented in tools such as PyZX [9] and in this work
we assume that the graph-like ZX-diagram is already fully
simplified.

C. Circuit Extraction

As a final step, one must extract a quantum circuit from the
previously optimized graph-like ZX-diagram. This extraction
is feasible in polynomial time if the underlying graph has some
kind of flow [10], [11]. Here, we provide a brief overview
of the extraction algorithm for graph-like ZX-diagrams with
gflow as described in [10]. The algorithm extracts a quantum
circuit by identifying suitable parts of the ZX-diagram and
converting them into their equivalent quantum gates. These
parts are then removed from the diagram, extracting one gate
at a time, until only the inputs and outputs remain. During the
process, a set of green Z-spiders, called the frontier, separates
the extracted portion of the diagram from the unextracted part.

There are three basic extraction rules:

• Phase: Phases of frontier spiders are directly extracted
as Rz gates.

• CZ: Hadamard wires between frontier spiders are ex-
tracted as CZ gates.

• Hadamard: Hadamard wires where a frontier spider is
only connected to a non-frontier spider are extracted as
Hadamard gates.

Example 4. Figure 3 illustrates the three extraction rules. ※

If every spider in the frontier has at least two non-frontier
neighbors, we can add wires of a frontier spider to another by
placing a CX gate in the extracted circuit with the following
effect:

1) CX: Extracting a CX gate with control c and target qubit
t copies all Hadamard wires of the target frontier spider
to the control qubit frontier spider. Double wires cancel
each other.

Example 5. In Figure 4 a CX gate between control qubit q0
and target q1 is extracted. The two Hadamard wires of the
frontier spider q1 are copied to q0 and cancel the existing
Hadamard wires. After this CX gate, the rest of the diagram
can be extracted, as shown on the right side. ※

In addition to this basic extraction, we also consider the
extraction of multi-qubit gates as described in [4]. This extends
the extraction to allow for multi-controlled phase gates of the
form CmP (θ) with m ≥ 1 control qubits.

III. NEUTRAL ATOM MAPPING

In this section, we introduce the neutral atom quantum
computing platform and the corresponding mapping problem
for Neutral Atom (NA) quantum computers.

A. Neutral Atom Quantum Computing

NAs have emerged as a promising platform for univer-
sal quantum computing [12]–[15]. They offer a wide range
of computational capabilities, including high-fidelity, long-
range interactions between qubits, native multi-qubit gate
support [15]–[17], and large-scale realizations [18], [19]. Ad-
ditionally, Bluvstein et al. [20], [21] have demonstrated high-
fidelity dynamic rearrangement and shuttling of qubit arrays
during computation, allowing for arbitrary connectivity with
some additional time overhead.

In recent years, the software community has increasingly
focused on the NA platform, developing various solutions for
NA-specific compilation tasks [5], [22]–[24]. Despite rapid
experimental advancements, there is a risk that the available
hardware may outpace the development of appropriate soft-
ware solutions, preventing full utilization of the hardware’s
capabilities [25]. The role of the compiler is to translate high-
level quantum algorithms into instructions executable by the
hardware, utilizing available quantum gates and operations
such as atom rearrangements.

B. Hybrid Architecture

In neutral atom quantum computing, qubits are encoded in
the electronic states of individual atoms, such as Rb, Sr, or Yb,
which are trapped in optical tweezers [18]. These qubits are
manipulated using laser beams, with single-qubit gates realized
through state transitions driven by a combination of global
and local lasers [13], [21]. Multi-qubit gates are implemented
via the Rydberg blockade mechanism, which prevents the
simultaneous excitation of two nearby atoms to a Rydberg
state. This technique enables the creation of fast and high-
fidelity CZ-gates [16], [21] on nearby atoms.

Additionally, qubits can be dynamically rearranged during
computation by shuttling atoms with high fidelity, allowing
for arbitrary qubit connectivity [21]. Experimentally, this is
achieved using two types of optical traps: 1. Spatial Light
Modulator (SLM) traps, which define single static trap sites,
and 2. Acousto-Optic Deflector (AOD) traps. AOD traps are
formed by overlapping two 1D AODs (in the x and y direc-
tions) to create a 2D grid of trap sites at their intersections [21],
[26]. Atoms can be transferred between trap types, referred
to as loading (SLM → AOD) and storing (AOD → SLM).
Qubits are shuttled by moving AOD rows and columns,
thereby rearranging the trapped atoms. However, this process
is constrained by the fixed ordering of rows and columns,
meaning they cannot be swapped [25].

C. Hybrid Mapping

The mapping problem in NA quantum computing involves
translating a quantum circuit into a sequence of operations
executable by the hardware. Based on the capabilities of NAs,
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Figure 4. Full ZX circuit extraction of a graph-like diagram using a CX gate to rearrange the graph connections.

we encounter a dual mapping problem. First, in the gate-
based mapping step, gates that are not trivially connected
can be routed by modifying the qubit mapping using SWAP
gate insertion [27], [28]. Second, in shuttling-based mapping,
the qubit mapping remains unchanged while the connectivity
graph is altered by moving atoms to new trap coordinates [21].
For shuttling, the special AOD constraint above of non-
permuted AOD rows/columns has to be fulfilled. The goal is to
minimize the number of SWAP gates and shuttling operations
to reduce both the number of erroneous operations and the
overall runtime, thereby minimizing decoherence [25].

Based on these considerations, several different approaches
to the mapping problem have been developed. This includes
NA-specific SWAP gate insertion [29] and shuttling-only
based mapping using AODs to rearrange the qubits [22]–[24],
[30], [31]. And, for the above described hybrid architecture,
corresponding hybrid mapping strategies have been developed
which aim to combine both capabilities to further optimize the
result [5], [32].

For this work-in-progress, we consider the mapper from [5],
which is available as an open-source project. It supports the
following functionality used within this work:

• Gate-based Mapping: SWAP gate insertion to connect
qubits that are not directly connected.

• Shuttling-based Mapping: Moving atoms next to each
other to enable direct gate execution.

• Multi-qubit Gate Support: Mapping of multi-qubit
gates (in particular multi-controlled phase gates
CmP (θ)).

• Hybrid Mapping: Automatic selection of the best map-
ping strategy based on the available hardware parameters.

We use this mapper due to its flexibility and applicability
to different hardware architectures, but the ideas discussed in
this work also generalize to other mapping strategies.

In the following, we provide a brief example to illustrate
the potential improvements due to cross-compilation.

IV. CONSIDERED PROBLEM

To illustrate the potential of cross-compilation during ZX
circuit extraction, let us revisit Figure 4 from Example 5. After
adding the CX gate, the remaining ZX-graph can be directly
extracted into a quantum circuit. The resulting circuit contains
three entangling gates (2 CZ and one CX) and requires
two-qubit gates between q0 ↔ q2 followed by q0 ↔ q1.
Alternatively, another CX gate can be inserted between qubits
two and three to further reduce edges in the ZX graph, then

continue with the circuit extraction. This step and its result
are shown in Figure 5, where the resulting circuit has four
two-qubit gates (2 CZ and 2 CX) and requires connectivity
between qubits q0 ↔ q1 and q1 ↔ q2.

This indicates that, in addition to the non-unique graph-
like representation of the circuit [2], there is a certain ”degree
of freedom” during the extraction procedure. As a result, the
extracted quantum circuits can have different numbers of (two-
qubit) gates with varying connectivity.

For circuit extraction, a typical metric is the number of
entangling gates, as they are a major source of error on
available hardware [33]. Thus, the first circuit would be
preferable as it requires three entangling gates compared to
four in the second circuit.

However, the problem becomes more complex when we also
consider the task of mapping the resulting circuit to a specific
hardware architecture. In particular, consider connectivity 1,
shown in Figure 6, which depicts two coupling graphs repre-
senting possible qubit connectivities. While the second circuit
can be executed directly on the hardware, as all required qubit
connections (q0 ↔ q1 and q1 ↔ q2) are directly available, the
first circuit contains an unavailable two-qubit gate connection
(q0 ↔ q2). As a result, additional SWAP gates need to be
inserted (e.g., between q0 and q1), which is realized by three
CX gates on hardware. In total, this results in 3 + 3 = 6
two-qubit gates for the first circuit, making the second circuit
the better choice with its four two-qubit gates. For the second
connectivity of Figure 6, on the other hand, the first circuit is
again the better option.

While in this simple example, it might be possible to
circumvent the additional SWAP gate by permuting the initial
assignment of circuit qubits to hardware qubits, it clearly
illustrates the interplay between circuit extraction and hard-
ware mapping. A circuit that might be preferable based on
metrics commonly used for circuit extraction, such as the num-
ber of two-qubit gates, might result in problematic mapping
configurations and, therefore, in suboptimal execution on the
final hardware. Although the example only considered SWAP
gate insertions, the general idea also applies to other mapping
strategies, such as shuttling and even hybrid mapping. To avoid
this suboptimal interplay, we propose a cross-compilation
scheme in this work, where the extraction and mapping
algorithms communicate iteratively to avoid compilation steps
that might be suboptimal for the opposite party.
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Figure 5. Alternative circuit extraction to Figure 4 with two CX gate insertions.

Connectivity 1 Connectivity 2

Figure 6. Example of two different qubit connectivities during the mapping
step.

V. PROPOSED SOLUTION

In this section, we present a solution to address the issue
of suboptimal compilation results arising from the disjoint use
of circuit extraction and mapping algorithms.

A. Solution Overview

Based on the example discussed above, we propose a cross-
compilation scheme where the circuit extraction and mapping
algorithms communicate to choose the optimal extraction step
and iteratively construct the complete circuit. This idea is
illustrated in Figure 7, with the circuit extraction algorithm
on the left and the mapping algorithm on the right. At the
beginning, or at any point during the extraction procedure, if
multiple equivalent circuit extractions exist, they are “sent”
to the mapping algorithm. These different circuits represent
potential extraction paths for the extraction algorithm. The
mapper analyzes these circuits to determine their suitability
for the current hardware configuration. Based on a given
metric, typically the number of two-qubit gates or some form
of fidelity, the mapper selects the best option, performs the
mapping, and reports the chosen extraction step back to the
extraction algorithm. The extraction algorithm then continues
along the reported path and restarts the feedback loop with
the next extraction paths. Through this iterative back-and-
forth communication, the entire graph is converted into a fully
mapped quantum circuit.

In the following sections, we provide more details on the
exact implementation and metrics used.

B. Implementation Details

For the ZX-extraction phase, we utilize the “default” extrac-
tion algorithm as described in [10]. Since the extraction path
choice can be non-unique, as illustrated above, we construct
a path for each possible option. The extraction paths are
generated using the default algorithm, which aims to minimize
the number of CX gates required to continue the extraction.
To increase the number of possible paths and, therefore, the
search space, one can additionally consider circuit extractions
with k CX gates more than the minimum necessary, which we

refer to as k-choice extraction. The parameter k represents a
hyperparameter, which allows a trade-off between search space
exploration and algorithmic runtime.

Furthermore, we also incorporate the extension proposed
in [4], which generalizes the extraction to include multi-
controlled phase gates of the form CmP (θ) in comparison to
only CZ and CX of the original default extraction algorithm.
The possibility to extract multi-controlled phase gates provides
additional extraction paths and might circumvent the problems
described in [4] where the extraction of large gates sometimes
resulted in worse circuit fidelity.

For the mapping phase, we employ the hybrid mapping
algorithm from [5], which supports both SWAP gate insertions
and shuttling operations for hybrid architectures. The optimal
path is determined by mapping the extracted circuits to the
current hardware configuration, including qubit placement and
connectivity. The best path is selected based on the approxi-
mate success probability (ASP), as defined in [25]:

ASP = exp

(
− tidle
Teff

) N∏
i=1

F (Oi) (1)

where F (Oi) represents the fidelity of the i-th operation, tidle
is the idle time, and Teff = T1T2

T1+T2
denotes the effective

coherence time. The ASP is used to assess the optimal
mapping capability (whether SWAP gate insertion or shuttling
is preferable) and accounts for hardware parameters such as
operation fidelities and coherence times. Consequently, the
optimal extraction path is influenced not only by the hard-
ware’s structure and capabilities but also by real-time hardware
parameters, which may be updated immediately before the
mapping step.

The extraction algorithm is implemented in Python using the
PyZX library [9], while the mapping algorithm is implemented
in C++ and relies on the hybrid mapper in MQT-QMAP [5].
Communication between the two algorithms is facilitated
through Python bindings created with the PyBind library [34].

The complete code, along with detailed documentation, will
be made publicly available and integrated into the Munich
Quantum Toolkit (MQT) [7].

VI. DISCUSSION

While this work-in-progress primarily introduces the initial
concept of cross-compilation for ZX circuit extraction, this
novel strategy holds significant promise for several reasons:

First, it represents a direct generalization of the conventional
approach, where quantum circuits are extracted and mapped



ZX CIRCUIT EXTRACTION

EXTRACTION PATHS

Gate-based       Shuttling

...
NEUTRAL ATOM MAPPER

Optimal Path

Cross-Compilation

Figure 7. Overview of the cross-compilation strategy and the communication between circuit extraction and mapping.

separately. In particular, the traditional method of fully ex-
tracting the circuit before mapping it is a specific instance
of our cross-compilation scheme, where only a single path
(the fully extracted circuit) is provided to the mapper. Hence,
the traditional approach sets a lower bound for extraction
performance, and introducing iterative communication with
local optimizations during extraction offers a promising avenue
for improving compilation outcomes.

Second, as the approach is based on graph-like
ZX-diagrams, it seamlessly integrates into the broader
ZX-calculus framework. This allows it to benefit from
sophisticated simplification rules, algorithms, and existing
software frameworks like PyZX [9]. Consequently, it can take
advantage of future enhancements in graph simplifications
within the ZX community.

Third, while we illustrate the strategy with neutral atom
hardware and multi-controlled phase gate extraction, the cross-
compilation concept can be extended to other extraction algo-
rithms and mapping tools. This includes more advanced ZX
extraction algorithms based on heuristics for minimizing CX
gate insertions [6] and T-gate optimized extraction [3]. Regard-
ing mapping, available tools could be used to extract circuits
favorable for various hardware architectures, such as neutral
atoms, superconducting qubits, and trapped ions, employing
different metrics like SWAP gate minimization or time-optimal
mapping. Implementing cross-compilation requires only minor
modifications to existing mappers, and using a common metric
like the approximate success probability from Equation (1)
offers a straightforward way to integrate existing mappers into
the proposed strategy.

For these reasons, we believe that cross-compilation is an
intriguing and promising strategy for ZX-based compilation.
The next steps consist of evaluating the proposed concept and
comparing it to already existing schemes—with the first results
being expected until the IWQC2024.

VII. CONCLUSION

In this work-in-progress, we introduced a novel circuit ex-
traction and mapping scheme tailored for quantum computing
based on neutral atom-based hardware using ZX-calculus.

Rather than treating circuit extraction and mapping as separate
tasks, we propose a cross-compilation approach in which the
extraction algorithm first constructs possible extraction paths,
which are then evaluated by the mapping algorithm. This
method enables more informed decisions regarding the optimal
extraction path, taking into account both the current hardware
configuration and its physical parameters. We anticipate that
this approach could enhance compilation results and make
better use of hardware capabilities. Additionally, we plan to
release the code as a reference implementation to facilitate
adaptation of this approach for other researchers, enabling
them to apply it to their own extraction and mapping algo-
rithms and hardware setups.
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