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The realization of large-scale quantum computers requires not only quantum error correction
(QEC) but also fault-tolerant operations to handle errors that propagate into harmful errors. Re-
cently, flag-based protocols have been introduced that use ancillary qubits to flag harmful errors.
However, there is no clear recipe for finding a fault-tolerant quantum circuit with flag-based proto-
cols, especially when we consider hardware constraints, such as qubit connectivity and available gate
set. In this work, we propose and explore reinforcement learning (RL) to automatically discover
compact and hardware-adapted fault-tolerant quantum circuits. We show that in the task of fault-
tolerant logical state preparation, RL discovers circuits with fewer gates and ancillary qubits than
published results without and with hardware constraints of up to 15 physical qubits. Furthermore,
RL allows for straightforward exploration of different qubit connectivities and the use of transfer
learning to accelerate the discovery. More generally, our work opens the door towards the use of RL
for the discovery of fault-tolerant quantum circuits for addressing tasks beyond state preparation,
including magic state preparation, logical gate synthesis, or syndrome measurement.

I. INTRODUCTION

Quantum systems are highly fragile due to their sus-
ceptibility to errors caused by decoherence. Further-
more, quantum operations are imperfect and error-prone.
Therefore, in order to harness quantum systems for com-
putation, the error rates must be significantly reduced.
Quantum error correction (QEC) is essential to protect
quantum information from these errors, allowing us to
perform complex and reliable computations [1, 2]. The
basic idea behind QEC is to encode logical qubits into
multiple noisy physical qubits in such a way that we can
detect and correct errors without destroying the logical
state. Although the implementation of QEC is a chal-
lenging task, recently we have seen several experimental
breakthroughs of QEC with different quantum comput-
ing platforms [3-9], first quantum circuits carried out on
up to 48 logical qubits [10, 11] and crossing the break-
even point of beneficial QEC [12-14].

QEC operations are often expressed using a sequence
of quantum gates that forms a quantum circuit. How-
ever, these gates are faulty and multi-qubit gates prolif-
erate the errors, compromising the scalability of QEC. In
general, the more gates, the more errors are introduced,
making QEC less effective [15-17]. Therefore, we want to
minimize the number of possible faulty operations that
can lead to harmful errors: this is achieved by designing
fault-tolerant (FT) circuits [18]. In FT circuits, all faults
(gates, measurements, errors, resets) that our QEC code
cannot correct become less likely to occur below a spe-
cific threshold as the distance of the code increases (see
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Sec. IIC for more details). In consequence, only by us-
ing FT schemes we can ensure systematic improvement
in correction as the size of the code scales. Therefore, FT
is of paramount importance in making scalable quantum
computers [2, 15-17]. Several classes of FT protocols
have been proposed [6, 18-22]. Among the first ones was
Shor-type error correction [23] which relies on additional
GHZ states and repeated measurements to check for er-
rors. Another scheme is Steane-type error correction,
which uses additional logical qubits to detect errors [24—
26]. Both approaches suffer from a large qubit overhead.
Recently, flag fault-tolerant error correction [20, 27-31]
was introduced as a way to achieve fault-tolerant proto-
cols with a minimal number of ancilla qubits, e.g. some-
times requiring only one extra qubit. For instance, in the
specific case of preparing a state fault-tolerantly, a flag
fault-tolerant protocol uses a verification circuit after the
encoding circuit that utilizes a few extra ancilla qubits,
known as flag qubits, to flag harmful errors while keeping
the logical state intact. There are already examples of
flag verification circuits in state preparation on several
QEC codes [32-36]. They have also been shown to be
effective in reducing logical error rates in experimental
realizations [3, 6, 7, 37-39)].

Despite their success, flag-based protocols are typically
handcrafted. Furthermore, flag-based protocols have so
far been implemented in devices with all-to-all qubit con-
nectivity. A transpilation process [40-42] can be applied
to the circuit to respect the qubit connectivity and gate
set, but it will generally make it non-FT. In other words,
the automatic compilation [43-47] of FT circuits has not
been widely explored yet.

In this work, we present a novel approach based on
reinforcement learning (RL) to automatically discover
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FIG. 1. Discovery of fault-tolerant logical state preparation

circuit with reinforcement learning (RL). Given the target
logical state [¢))r of a specified [[n,k,d]] code, a gate set,
and a qubit connectivity, we use RL to automatically discover
circuits for preparing |¢) 1 fault-tolerantly with flag qubits.

fault-tolerant quantum circuits for QEC. RL is an ap-
proach in which an agent learns to make decisions by
interacting with an environment in order to maximize its
reward through guided trial and error. We apply our
method to the task of logical state preparation. Specifi-
cally, our approach is based on the automatic discovery of
quantum circuits that fault-tolerantly prepare the logical
states of a given QEC code under hardware constraints.
That is, we can constrain the qubit connectivity and the
gate set based on the quantum platforms of interest, as
shown in Fig. 1. The RL agent needs to find an optimal
strategy by applying a discrete gate at each step, guided
by reward signals.

Recently, reinforcement learning (RL) [48] has emerged
as a useful tool for solving various problems in quantum
technologies [49]. It has been applied to quantum error
correction [50-55], quantum control and state prepara-
tion [56-61], and quantum compilation [62-68] among
many others. It has been shown that RL stands out in
quantum state preparation when the gates applied by the
agent are discrete [56]. Furthermore, RL is suitable for
our task because it can be formulated as a goal-oriented
task that is specified in the reward signals. In addition,
we find that RL is capable of efficiently navigating large
and complex quantum circuit spaces. Finally, RL enables
efficient and flexible automated discovery through trans-
fer learning, i.e., reusing trained RL agents for similar
but different quantum circuit problem instances. This
is not possible, for example, in the method proposed in
Ref. [69], where finding a fault-tolerant quantum circuit
is framed as a Satisfiability Modulo Theory (SMT) prob-
lem.

We test our method on several QEC codes, including
the 5-qubit perfect code, the 7-qubit Steane code, the
9-qubit Shor code, and the 15-qubit Reed-Muller code.
Our first RL approach is to separate the task of finding
a FT logical qubit encoding protocol into a logical state
preparation task followed by a verification circuit syn-
thesis task. Individually, the RL method for each task
already produces quantum circuits that have better or
similar performance to existing circuits. More interest-

ingly, by integrating the logical state preparation and
verification circuit synthesis tasks, a single RL agent can
directly prepare FT logical states and is able to outper-
form all other available approaches. Thus, this work es-
tablishes RL as a viable approach for FT quantum circuit
synthesis tasks that go beyond the preparation of logical
states.

The paper is organized as follows. In Sec. II, we give a
brief background on FT QEC and RL. In Sec. 111, we de-
scribe our general reinforcement learning framework for
fault-tolerant logical state preparation. The preparation
of a FT logical state can be divided into two successive
tasks: the preparation of the logical state, described in
Sec. IV, followed by the synthesis of the verification cir-
cuit, described in Sec. V. In Sec. VI, we go beyond the
separation of tasks and present our main integrated ap-
proach, where we directly prepare FT logical states. In
Sec.VII we summarize our work and discuss further ex-
tensions.

II. BACKGROUND
A. Quantum Error Correction

Here, we briefly review basic concepts from stabilizer
quantum error correcting (QEC) codes and introduce the
notation that will be used in this paper. Readers familiar
with these concepts are invited to skip to Sec. ITB.

The main idea of quantum error correction is to intro-
duce redundancy by encoding k logical qubits into n > k
noisy physical qubits. In this work, we focus on a spe-
cific type of QEC codes called stabilizer codes [70]. Given
the Pauli group of n qubits, the set of stabilizers S is
a subgroup such that all elements of S commute with
each other and —I ¢ S. If S is generated by the set
G = {(g1,.-.,9n—k), then the code space corresponds to
the joint +1 subspace of all generators g;, hosting log-
ical quantum states [¢), for which g;|¢p) = [¢) for all
generators. Within the code space, each code word can
be transformed into one another using the logical oper-
ators Z%, X4 with i = 1,...,k, where Z! and X! com-
mute with all elements of the stabilizer group and satisfy
[Zi,X7] = 2Z% X9 6;;, where ;; is the Kronecker delta.
For instance, for the case of a QEC code hosting a single
logical qubit, k =1, Z1|0), = |0)z, Z1|1)r, = —|1)1, and
X110y, = |1)r. Thus, once S is chosen, the choice of
logical operators fixes the codewords |0)r and |1); and
all their linear combinations.

The weight of a Pauli operator is the number of non-
identity components within that operator. The minimum
weight among all possible choices of logical operators de-
fines the distance d of the QEC code. A QEC code is
able to detect d — 1 errors and correct |[(d —1)/2] errors.
A distance d QEC code encoding k logical qubits into n
physical qubits is denoted as [[n, k, d]].

A QEC code can be defined solely by its stabilizer gen-
erators g;. When the stabilizer generators consist of ei-



ther X or Z Pauli matrices, such that they can be re-
lated to two independent classical codes Cx and Cy for
the X and Z stabilizers, they are called Calderbank-Shor-
Steane (CSS) codes [71, 72]. Due to their simplicity and
connection to classical codes, CSS codes are at the fron-
tier of theoretical and practical implementations of QEC
[3, 13, 37]. Two famous examples of CSS codes are the
surface/toric code [17, 73] and the color code [74, 75].
In our work we consider the search for FT and non-FT
encoding circuits for several CSS codes (including color
codes) and the 5-qubit code, which is a non-CSS code
(see Appendix F for the code definitions).

B. Logical Qubit Encoding Circuit

Once a QEC code and the logical operators are chosen,
the next step is to find a way to encode the desired logical
states. For stabilizer codes, one approach is to measure
the stabilizers and apply conditional local operations that
bring the state back into the code space [5, 7]. This ap-
proach relies on stabilizer measurements, which has the
disadvantage of being susceptible to measurement errors,
and forces repeated measurements according to the code
distance to ensure FT, resulting in a large gate count. An
alternative approach is to find a unitary circuit U that en-
codes such information using the given code [3, 4, 6, 37].
For instance, encoding a logical zero |0) 1, implies finding a
circuit that performs the task |0);, = U]0)®™. Unlike sta-
bilizer measurement encodings, unitary encodings avoid
repeated stabilizer measurements, potentially reducing
the number of gates. Importantly, even after choosing
a QEC code and codeword, there is no unique recipe for
finding an encoding unitary U.

NISQ devices often have specific constraints, such as
limited qubit connectivity and native gate set availabil-
ity. To fulfill these constraints, a transpilation process
is commonly applied to the circuit. The whole proce-
dure typically involves mapping the qubits in the cir-
cuit to physical qubits, routing the qubits based on the
connectivity by inserting swap gates, decomposing gates
into native gates, and optimizing the final circuit [40-42].
Since the procedure involves inserting and decomposing
gates, this process will, in general, increase the size of the
circuit.

Due to their simplicity and relevance, we restrict our-
selves to logical Pauli eigenstates only. Thus, we can
focus only on Clifford circuits, where the logical state
[v) = UJ0)®" is always determined by its stabilizer
tableau [76]. In particular, a tableau of a single logi-
cal codeword contains the n — k stabilizer generators and
the k logical operators, which can be represented as a
binary matrix that scales quadratically with respect to
n. Appendix A shows more details on the tableau rep-
resentation. While different tableaus may represent the
same state, their canonical form [70] remains the same. A
canonical tableau can be obtained by applying Gaussian
elimination to the tableau [76]. This means that differ-

ent encoding circuits preparing the same logical state will
have the same representation. We will use this represen-
tation later as an input to the RL agent. The canonical
representation helps the RL agent to learn more effec-
tively and efficiently by reducing complexity and ensur-
ing comnsistency of the input space.

It has been proven that Clifford circuits can be effi-
ciently simulated using classical computers [76]. Despite
its simplicity, finding a compact circuit is still not triv-
ial [77, 78]. Several methods have been proposed to pre-
pare arbitrary stabilizer states [76, 79-82]. Some meth-
ods have also been developed specifically for the prepa-
ration of logical states of stabilizer QEC codes [83-87].
However, these techniques generally do not include any
hardware constraints, nor do they output fault-tolerant
quantum circuits, the latter of which we will focus on
next.

C. Fault-Tolerant State Preparation

In practice, quantum gates are faulty and thus intro-
duce errors in state preparation. A simple but effective
model for gate failures is to consider the perfect gate
to be applied only with probability 1 — p, where p is
the probability that a fault occurs when the gate is ap-
plied. In this work, we consider any fault consisting of
bit flips (X Pauli), phase flips (Z Pauli), or both (Y
Pauli). Therefore, single qubit gates have 3 error gen-
erators £ = {o}/I and two qubit gates have 15 error
generators £ = {0, @0, } /(I ®I), where k,m =0,1,2,3
denotes the Pauli matrices including the identity. More
formally, the errors introduced by the gates are modeled
by introducing a depolarizing channel after the gates:

GpGl = (1-p)GpGT + Y %EGpGTE, (1)

foe €l

where G is the ideal gate, p is the probability of having
a gate error, and |&| is the number of elements in the set
of all error generators £. This is the standard modeling
of gate errors, often referred to as circuit-level noise [3,
6, 8, 84].

An error E can be propagated through the circuit in
such a way that a unitary Ug = EU can always be writ-
ten as the error-free U followed by the propagated error
E. For Clifford unitaries, F remains a single Pauli error
obtained by propagating E through the individual gates
one by one [84]. There are two classes of errors that we
consider according to their propagated version: (i) E is
a member of the stabilizer group, thus acting trivially on
the stabilizer states, or its weight is small enough that it
can be removed by QEC, in which case, we say the error
is tolerable. (ii) Its weight is large enough that it cannot
be corrected, causing a logical failure after a QEC cycle.
We call such errors harmful.

In practice, any circuit that is not carefully designed
will have components whose failures lead to harmful er-



rors. For example, even a single gate failure with prob-
ability p can lead to a logical error. Therefore, increas-
ing the code distance of the QEC code would not sup-
press the logical error rate, because there would always
be uncorrectable events with probability p. Formally,
for a code of distance d able to correct errors of weight
t = |(d —1)/2], the logical error rate in a FT archi-
tecture py, scales as pr, ~ p‘T! for p below the threshold
[15, 16, 23], which ensures an ever decreasing logical error
rate when increasing the size (number of physical qubits)
of the QEC code. In contrast, if a harmful error occurs
with probability p, the expected gain from QEC is lost,
no matter how large d is. In other words, all error events
with probability p®, o < (d + 1)/2 should be tolerable
in the sense that they are corrected after QEC cycles.
A circuit or component that fulfills the latter condition
is called fault-tolerant (FT) [20, 21, 28, 29, 69, 88-91].
As an example, let us consider a code with d = 3 that
corrects any single qubit error. Some gate failures in this
code can produce weight-two harmful errors. Therefore,
pr ~ p if the circuit design is non-FT. If the encoding cir-
cuit is made fault-tolerant, then all errors coming from a
single gate failure become tolerable, and only errors com-
ing from two gate failures are harmful, hence py, ~ p2.

There is no unique way to render a circuit FT [3, 21,
28, 69, 89, 92, 93]. Recently, flag verification circuits
[20, 28, 29] have been proposed for turning non-FT cir-
cuits into FT ones. The flag verification procedure is
based on coupling additional ancilla flag qubits to the
main register in such a way that the error-free state is
unperturbed and the flag qubit(s) always have the same
measurement outcome. When faults that lead to harm-
ful errors occur in any component of the circuit, the flag
qubit(s) are triggered, i.e., flip the measurement outcome
of the flag ancilla qubit(s). Thus, harmful errors are
flagged out by the flag qubit, allowing us to do post-
selection on the ancilla measurement outcomes. One can
then apply a repeat-until-success mechanism (rejecting
outcomes with triggered flag qubits and accepting out-
comes without triggered flag qubits) and apply QEC to
remove the tolerable errors.

D. Reinforcement Learning

Reinforcement learning (RL) [48] aims to train an
agent to take an optimal set of actions in an environment
(here a simulation of our physical system). This goal is
achieved by maximizing the expected returns or the cu-
mulative rewards via a guided trial-and-error approach.
In this work, we focus on model-free reinforcement learn-
ing, where the agent does not know about the model of
the environment. Formally, an RL agent observes the
state of the RL environment s;, applies a discrete action
a; at time step t that changes the state of the environ-
ment from s; to s;y1, and receives an instantaneous re-
ward ;. An episode is a trajectory of states and actions
T = (80, ag, 81,01, - - ., $7) from the initial state sy to the

terminal state s7. An RL agent learns a policy function
my parameterized by 6, which maps each state of the en-
vironment to a probability distribution over all possible
actions. mg(a¢|s:) gives the probability of applying action
a; for a given state s; of the environment. The RL agent
is trained to maximize the expected returns (cumulative
reward) over multiple episodes J(0) = E ., [Z;‘FZO 7).

Policy gradient methods [94] optimize the objective
function J(0) with gradient ascent. In this work, we use
a deep reinforcement learning algorithm where a deep
neural network is used to compute mg, where 6 corre-
sponds to the weights and biases of a neural network.
We use a state-of-the-art variant of policy gradient meth-
ods called Proximal Policy Optimization (PPO) [95]. In
PPO, we use two networks: an actor and a critic network.
The former determines the action taken by the agent,
while the latter measures the quality of the action taken
by the agent. Both networks take the representation of
the observation as input. The actor network outputs the
probability of taking each discrete action, while the value
network outputs a value that corresponds to the expec-
tation value of the cumulative reward. During training,
the parameter 6 of the networks is updated in such a way
that the objective is satisfied.

III. REINFORCEMENT LEARNING
FRAMEWORK FOR QUANTUM CIRCUIT
DISCOVERY

Clifford Gate Set Qubit Connectivity

CIEIE ion %0
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FIG. 2. The general RL framework in this work. The cir-
cuit is the environment, where its state is represented by its
stabilizer canonical tableau. At each step, the RL agent ob-
serves the environment and applies a discrete Clifford gate
as an action from the specified available gate set (e.g., the
Hadamard gate H, the phase gate S, and the CNOT gate),
taking into account qubit connectivity constraints. Subse-
quently, the agent receives a reward depending on the given
task and the quality of the proposed circuit.

Here we first introduce the general RL framework as
shown in Fig. 2. In this work, an RL agent is trained
to output circuits (suggesting a sequence of gates) for a
given task (i.e. logical state preparation, verification cir-
cuit synthesis, or integrated fault-tolerant logical state



preparation). At each step, the RL agent observes the
state of a quantum circuit and applies a discrete Clifford
gate to the quantum circuit as an action. A trajectory
stops when the number of gates is greater than a pre-
set maximum number (counting as a failure) or when it
reaches the success criteria defined by the task. We as-
sume that all physical qubits in the circuit are initialized
in the |0) state. The hardware constraints, such as the
set of available Clifford gates and the qubit connectivity
of the device considered, determine the set of possible ac-
tions that the agent can take. The reward is then given
according to how well the quantum circuit proposed by
the agent fulfills the task, which will be explained in the
following sections.

We must then choose a representation of the RL
agent’s observation. The most common representation
is to directly observe the quantum circuit [96, 97] or to
observe the state vector of the state that the circuit rep-
resents [56, 58, 59, 98]. However, multiple quantum cir-
cuits could represent the same state, and the state vector
representation scales exponentially with n. Since we are
focusing on stabilizer codes, we can use the stabilizer
tableau of the circuit as a representation of the state of
the environment. Even better, we can use the canonical
tableau as the representation, so that different circuits
producing the same output state have the same repre-
sentation. This representation scales quadratically with
n.

Although the state representation is polynomial in n, a
brute-force search of the circuit scales exponentially with
the number of gates L. Suppose we choose a gate set
consisting of G one-qubit gates and Gy two-qubit gates
with all-to-all qubit connectivity. At each step, the agent
must decide over nG+(n?—n)G5 possible actions, which
scales quadratically with n. Furthermore, if we assume
that a circuit has L gates, then the space of all possible
solutions grows exponentially as (nGy + (n? — n)Gy)~%,
making search algorithms infeasible.

As a side note, instead of using a discrete Clifford gate
set, one can also use a continuous gate set with a pa-
rameterized circuit and use a variational approach as in
Ref. [99]. However, in a variational approach, the state
can no longer be efficiently described within the stabilizer
formalism. Furthermore, one has to design an ansatz and
optimize the parameters, which generally does not scale
well due to barren plateaus [100].

We use the PUREJAXRL library [101] for the imple-
mentation of the PPO algorithm, which is written with
the Jax [102] library to allow very fast parallel training
on a GPU. We then implement the environment for each
task using JAX. This means that the simulation of the
Clifford circuits and the computation of the rewards run
very fast in parallel on the GPU. Therefore, we train mul-
tiple agents in parallel and each agent is trained on mul-
tiple environments also in parallel. The code is available
online [103]. The details of the hyperparameters used
and the training process are described in Appendix B.
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FIG. 3. Description and reward function for the logical
state preparation task. (a) The logical state preparation
task outputs a circuit U that prepares a target logical state
|)r, of a [[n,k,d]] code. (b) The preparation of the state
[tsarget) = |000) 4 |111) (normalization factors are not shown
for simplicity) from the initial state |¢)o) = |000). We show
the value of the three possible functions at each time step ¢ for
the reward: fidelity |(¥¢|trarget)|?, energy >, (1b¢|H|¢:) used
in [99], and our proposed complementary tableau distance
1 — d;. In this case, the proposed complementary tableau
distance is monotonically increasing, which is easier for RL
algorithms to learn compared to the other functions.

IV. LOGICAL STATE PREPARATION
A. Task Description and Reward Function

The goal of the logical state preparation task is to find
a circuit U that prepares the target stabilizer state (see
Fig. 3(a)). The task requirement is the canonical tableau
Tiarget Of the target stabilizer state [¢target). Note that al-
though in this paper we focus on preparing logical states
of a stabilizer code, this task is general enough to prepare
any stabilizer state.

In any RL application, it is of utmost importance to
design a good reward function according to the goal.
A natural choice of the reward function is the fidelity
of the state [56, 57, 59, 98, 104, 105]. For a given
state at time step t, i), the fidelity can be computed
as [(Y¢]ttarget)|?, however it suffers from the sparse re-
ward problem [48]. As an illustration, consider preparing
|target) = |111) from an initial state of |1)g) = |000). The
agent would have to apply the Pauli X gate to every qubit



that changes the state from |000) to |100) to |110) to
|111). However, the fidelity value only changes on the last
step, since [(000]111)|? = |(100[111)]?> = [(110]111)|* =
0. This makes the RL agent harder to train because it
does not get immediate feedback.

Since we are preparing a stabilizer state, there are
seemingly better rewards that we can use, but there are
still drawbacks. In Ref. [99], finding a logical state of a
stabilizer code is framed as finding the ground state of
a Hamiltonian H = — Z?:_lk gi — Z?Zl 07, where g are
the generators of the target state and Oy, are the logical
operators. This then allows one to compute the energy
as B =3 (¢|Hbg). If |1hy) = [Yrarget), then the ground
state energy Ey = —n. Ref. [99] used E as a cost func-
tion for the variational optimization of a parameterized
circuit. In our case, we use —F instead, since we want to
maximize the cumulative reward. Although the compu-
tation of this function scales linearly with n, it still suffers
from the sparse reward problem. One can see that there
are only 2n possible discrete energy values ranging from
—n to n.

We introduce another measure that does not suffer
from the sparse reward problem, and the computation
of its value does not scale exponentially. We refer to it as
the tableau distance d;, which is the distance between the
tableau describing the output state of the currently pro-
posed quantum circuit and the tableau of the target state.
We convert the tableaus into binary vectors and measure
the binary distance d; between the two. Here, we use
the Jaccard distance (see discussion in Appendix C). We
normalize the dy so that it ranges from 0 to 1 and we
use the complementary tableau distance 1 — d; since the
training of RL maximizes the cumulative reward.

Fig. 3(b) illustrates how the three possible functions
(fidelity, energy, and complementary tableau distance)
for the reward change for preparing |000)+|111) (normal-
ization factors are not shown for simplicity) from |000).
We see that in this case, unlike the other functions, the
proposed complementary tableau distance 1 — d; always
increases when gates are applied, giving good feedback
to the RL agent. We can also see that from ¢ = 1 to
t = 2, applying the correct gate does not change the fi-
delity and energy functions, which is not a good feedback
to the RL agent. This is not the case for 1 —d;. Our em-
pirical numerical experiments also showed that using our
proposed complementary tableau distance function as a
reward leads to faster convergence of the training of the
RL agent compared to using the rewards based on the
fidelity and the energy.

Finally, one can give the reward only at the last time
step (e.g. 7t = 1 —dp at t = L, otherwise r, = 0). How-
ever, this means that the agent does not receive immedi-
ate feedback after performing an action. Instead, we use
the reward shaping technique [48] by giving a small inter-
mediate value at each step so that the training converges
faster. Therefore, at each time step t, we give the dif-
ference of the complementary tableau distance between ¢

and t — 1, or more formally,
’l"t:dtfl—dt. (2)

In this case, the cumulative reward Zf:o re is still 1 —
dr. A trajectory stops when the complementary tableau
distance is greater than a threshold € close to 1 (success)
or the number of gates is greater than a threshold L
(failure).

As a side note, one might notice that the reward func-
tion does not have a term that minimizes the number of
gates. This is intrinsically embedded in the RL formu-
lation, which we explain in more detail in Appendix E.
Additionally, it is straightforward to extend the reward
function to consider different objectives or constraints.
For example, to minimize the number of two-qubit gates,
we could add a term that gives a higher cost for two-qubit
gates than for single-qubit gates.

B. Results

We apply our approach to prepare logical states of dif-
ferent QEC codes. Our goal is not only to demonstrate
the generality of our approach by benchmarking it as
broadly as possible but also to address the ongoing and
timely challenge of identifying optimized circuits. We are
interested in the preparation of logical states of the fol-
lowing QEC codes. The first code that we consider is the
smallest complete error-correcting code, the [[5, 1, 3]] per-
fect code [106], which has been realized experimentally,
for example in [6, 7]. This code is non-CSS. We then con-
sider several CSS codes. The first quantum error correc-
tion code, the [[9, 1, 3]] Shor code [107], which has been
realized experimentally, for example in [108, 109]. We
also consider 2D and 3D color codes [74, 75]. The [[7, 1, 3]]
Steane code [71] is the smallest CSS and triangular 2D
color code that has been realized experimentally, for ex-
ample in [3, 6, 37, 110, 111]. We also explore the distance
5 2D color code, which is the [[17, 1, 5]] code [75]. Finally,
we consider the smallest error-correcting 3D color code,
the [[15, 1, 3]] Reed-Muller code [74, 112]. The stabilizer
generators of these codes are listed in Appendix F for
completeness.

In all of the codes mentioned above, we can choose
Z®" as the logical Z; operator. This means that we
prepare the |0); states of these codes, except for the
[[9,1,3]] Shor code, where the same choice corresponds
to the |+) 1 state. The preparation of other logical states
can be achieved by changing the target logical operator
accordingly. As an evaluation metric, we measure the
circuit size, which corresponds to the number of gates in
the circuit.

We first discuss the preparation of logical states on a
device with all-to-all qubit connectivity and a gate set
consisting of the gates H, S, and CNOT, which we refer
to as the standard gate set. This connectivity and gate set
is realistic, for example, in trapped-ion-based quantum
computers [117].
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(a) The minimum circuit size of different methods for logical
state preparation of different QEC codes with all-to-all qubit
connectivity and H, S, and CNOT gates. StabGraph [83]
does not work for non-CSS codes such as the [[5, 1, 3]] perfect
code. QMAP [80] could not prepare the state of the [[15, 1, 3]]
and the [[17,1,5]] code in the allotted maximum time of 12
hours. The inset shows an example of the training progress
for preparing the |0)1 state of the [[7,1, 3]] Steane code. (b)
Comparison of circuit size from an RL agent that includes the
connectivity and gate set during training (RL Direct) with re-
spect to RL-prepared circuits for all-to-all qubit connectivity
that have been transpiled with QISKIT [40] (RL + Transpile).
Results shown for various IBM Quantum device connectivi-
ties [113-116] using CNOT, VX, X, and S = R.(7/2) gates.
The inset shows examples of RL-prepared circuits for the |0),
state of the [[5, 1, 3]] perfect and the [[7,1, 3]] Steane code.

We compare our RL method with four different Clif-
ford circuit synthesis methods, where one provides the
tableau and the respective methods automatically syn-
thesize a Clifford circuit. Two of them are available in
the QISKIT [118] library, based on the algorithm provided
by Bravyi et al. [79] and Aaronson-Gottesman [76]. We
also compare with StabGraph [83], which works only for
CSS codes and uses graph states, and QMAP [80], which
converts the problem into a Boolean satisfiability (SAT)
problem and solves it with a SAT solver. For QMAP, we
use the MAX-SAT algorithm, use the depth as the opti-
mization target, and then minimize the number of gates.
We find that using the number of gates as the optimiza-
tion target of the MAX-SAT algorithm is very slow even
for small n.

Fig. 4(a) shows the comparison of the smallest cir-
cuit size between different methods for preparing logical
states of different codes. We see that the RL method
always prepared a smaller circuit size compared to the
other methods. StabGraph [83] is specialized in prepar-
ing logical states of CSS codes, therefore it does not work
for the [[5, 1, 3]] perfect code. QMAP [80] also did not fin-
ish the logical state preparation for n > 10 in the allotted
maximum time of 12 hours. The inset of Fig. 4(a) shows
the training progress for the preparation of the |0) for
the [[7,1, 3]] Steane code. The shaded area indicates the
minimum and maximum values over 10 agents trained in
parallel, where each agent saw 16 environments in paral-
lel. The entire training takes approximately 100 seconds
on a single NVIDIA Quadro RTX 6000 GPU and pro-
duces 10 circuits. On average, the 10 agents converge
after seeing about 6000 episodes. In Appendix G, we
show some examples of circuits prepared by the RL agent
and discuss some of the strategies that the RL agent
learned. For example, we see that in some cases the agent
would first try to get the correct tableau without worry-
ing about the sign, and then uses Z gates (two S gates)
to fix the sign.

So far, the agent is used only once after training to
generate circuits for a specific logical state. However,
an advantage of the deep RL method is that one can
reuse the agent trained for one task and retrain it for
another task. This is commonly referred to as transfer
learning [119, 120]. For example, one can take the agent
that prepares the |0), state and reuse it to train another
agent that prepares the |+)p state and the | + i) state
more efficiently. We show these results in Appendix H.

We now show that the RL method is robust enough to
adapt to different realistic qubit connectivities and gate
sets from different hardware platforms by constraining
the actions that the RL agent can take. We illustrate
this by focusing on several IBM Quantum devices. The
IBM Quantum devices have CNOT, X, VX, and Ry
gates (parameterized rotation along the z-axis) as their
native gate set. Instead of using an arbitrary Ry gate,
we choose to include the S gate, which can be translated
into a Rz(mw/2) gate.

We prepare the |0) 1, state of the [[5, 1, 3]] perfect code
on the IBMQ Manila [113] connectivity, the |0); state
of the [[7,1,3]] Steane code on the IBMQ Jakarta [114]
connectivity, the |+) state of the [[9, 1, 3]] Shor code on
the IBMQ Guadalupe [115] connectivity, and the |0)1
state of the [[15, 1, 3]] quantum Reed-Muller code on the
IBMQ Tokyo [116] connectivity. These connectivities are
shown at the bottom of Fig. 4(b). We trained several
agents and take the circuit with the minimum circuit
size.

We refer to the RL method that directly restricts the
connectivity and gate set in the training as RL Direct.
We compare it to the RL + Transpile method, where
we take the RL-prepared circuit for all-to-all qubit con-
nectivity and transpile it with the QISKIT transpiler [40].
Fig. 4(b) shows the comparison of circuit size between the



two methods. We see that circuits from the RL Direct
method always have a smaller circuit size as compared to
circuits obtained with the RL + Transpile method. This
shows that restricting the actions of the RL agent based
on the hardware constraint during the training is better
than transpiling a circuit from all-to-all qubit connectiv-
ity.

The inset of Fig. 4(b) shows examples of a circuit pre-
pared by the RL agent for the |0), of the [[5, 1, 3]] perfect
code on the IBMQ Manila connectivity and the [[7, 1, 3]]
code on the IBM(Q Jakarta connectivity. Interestingly,
we see that in the circuit for the [[7, 1, 3]] code, the agent
learns a new gate sequence v/ X, CNOT, and S (shaded in
yellow in the figure). This gate sequence is equivalent to
a H gate followed by a CNOT gate. The agent discovers
this gate sequence because the H gate is not available as
a native gate on IBMQ devices. Appendix I shows more
examples of logical state preparation circuits on IBMQ
devices.

In terms of efficiency, the training of the RL agent
to prepare the |0)z of the [[7,1,3]] Steane code for the
IBMQ Jakarta connectivity takes approximately 200 sec-
onds on a single NVIDIA Quadro RTX 6000 GPU. One
could argue that this is much slower than transpiling a
circuit for all-to-all qubit connectivity. However, as we
have shown, the resulting circuit size is smaller and the
training only needs to be done once. Furthermore, the
training can be accelerated through transfer learning. In
Appendix J, we show a technique where the agent trained
to prepare a logical state for all-to-all qubit connectivity
can be reused and retrained to prepare the same state
with different connectivity.

In summary, we have shown that RL can prepare log-
ical states of different QEC codes with smaller circuit
sizes than other methods in all-to-all qubit connectivity.
We also show that by directly incorporating the hard-
ware constraint by restricting the connectivity and gate
set in the training is better than transpiling a circuit for
all-to-all qubit connectivity. Furthermore, we can reuse
a trained RL agent to speed up the training of the RL
agent for different but similar problems.

V. VERIFICATION CIRCUIT SYNTHESIS
A. Task Description and Reward Function

The goal of the verification circuit synthesis task is to
synthesize a circuit V' and use the ancilla flag qubits to
flag harmful errors and thereby render the encoding pro-
tocol fault-tolerant (see Fig. 5). The task requirement is
the sequence of gates that form the circuit U to prepare
the target logical state |¢);, and the number of the an-
cilla flag qubits n4. It is possible that several circuits
represent the same unitary U, but the propagated error
would be different. The ancilla flag qubits are initialized
in state |0) and are always placed last in the qubit order-
ing. For a given circuit, it is usually not known a priori
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FIG. 5. The verification circuit synthesis task prepares a
circuit V' that uses flag qubits to flag harmful errors, thereby
rendering a state preparation fault-tolerant.

how many ancilla qubits are needed to flag all of the
harmful errors. Therefore, it is possible that the agent
cannot find a solution for a given number of ancillas. On
the other hand, it is also possible that the agent will not
use some ancillas if n 4 is larger than needed.

There are underlying principles for designing FT flag
verification circuits [20, 28], although they do not provide
a direct recipe for FT circuit design. For instance, in the
case of d = 3 CSS codes, state verification is equivalent
to measuring some logical operators [32]. However, for
higher distances or non-CSS codes, a straight-up mea-
surement of one of the logical operators does not nec-
essarily lead to an FT verification. Our goal is to use
reinforcement learning to automatically find verification
circuits under very general constraints.

We consider three criteria that must be met for this
task. The first and most important criterion is to ensure
that all harmful errors are flagged. While applying gates
to the ancilla, it is possible that the state will change.
Therefore, preserving the logical state is the second crite-
rion. Finally, we do not want that the data (non-ancilla)
qubits are entangled with the flag qubits, since this will
destroy the logical state when we measure the flag. Thus,
the third criterion is that the final state is a separable or
product state of the data qubits and the flag qubits such
that VU|00...0) = |¢)1|¢)F, where |¢)p is the state
of the flag qubits. In summary, the RL agent must flag
all harmful errors while preserving the logical state and
keeping it disentangled from the flag qubits.

For the first criterion, we reward the agent based on
the number of harmful errors that are flagged. We first
apply circuit-level noise to the circuit U and obtain the
set of all possible error operators £ in the circuit. When
the agent applies a gate, which is faulty, we update the
set £ by propagating errors from the applied gate and
also the old errors. The set £ may grow with new errors
or shrink because some errors may become obsolete.

At each time step ¢, we compute f; (f for flag) given
as,
if £ is I and a flag is triggered,
if F is tolerable,
if F is harmful and a flag is triggered,
if F is harmful and flags are not triggered.
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The first term is used to prevent the agent from choos-
ing a naive strategy like always flagging the ancilla (e.g.
applying an X gate to the flag qubits).

We then normalize f; by dividing it by the total num-
ber of errors |£]. Note that some errors may initially have
a large weight, but can be reduced by multiplication with
a member of the stabilizer group. For instance, an error
with weight 4 that is a member of the stabilizer group
will have weight 0 and become a tolerable error. There-
fore, to consider whether an error is tolerable or harmful,
we compute the minimum weight of each error by mul-
tiplying it by all members of the stabilizer group when
computing the reward. For instance, for the 5-qubit code,
we check all 2° = 32 elements of the stabilizer group, in-
cluding the state-dependent logical operator.

One might notice that if an error E is tolerable and
the flag is triggered, the agent still gets a reward. This
is inevitable, since it is not possible to both flag all of
the harmful errors and with the same circuit construction
unflag all of the tolerable errors. We can consider flagged
tolerable errors as “unlucky” cases - note that this does
not compromise FT, of course. One could add additional
terms in the reward function to minimize this.

In principle, accurate FT circuit design requires con-
sideration of every type of error that can occur in the
circuit. However, CSS codes provide a further simplifica-
tion in the design of fault-tolerant schemes. For instance,
multiple Z errors usually lead to logical failures of the
type Zr|¥) (assuming Zj, consists only of Z operators).
Therefore, by restricting to |0)7,, we make multiple Z er-
rors tolerable, since Z1|0), = (+1)]|0)r. Thus, only X
and Y errors at the end of the encoding circuit are po-
tentially harmful. The same applies to the preparation
of Xp|+)r = |+)r, if X1 consists only of X operators,
it is sufficient to consider Z and Y errors. Synthesis of
FT encoding circuits for codewords |0}, and |+) 1, of CSS
codes is then easier in the sense that either X or Z is not
harmful by construction. However, this is not true for
non-CSS codes, because the stabilizers have both X and
Z Paulis, so the logical operators consist of both X and
Z operators.

For the second criterion, we need to make sure that
the circuit preserves the logical state |¢);. Here we can
use the three possible functions discussed in Sec. IV. In
this case, we reuse our proposed complementary tableau
distance to measure the distance between the canonical
tableau of the target logical state and the current error-
free canonical tableau of the data qubits.

For the third criterion, we directly enforce the state to
be a separable state of the data and ancilla flag qubits.
This is necessary in order not to change the error-free log-
ical state after the measurement of the ancilla qubits. In
the stabilizer formalism, the latter is achieved by target-
ing the stabilizer generators of the ancilla in the current
error-free canonical tableau to be Z in the location of the
ancilla and I in the others. We can extract the canonical
tableau of the ancilla qubits by taking the submatrix of
the canonical tableau where the rows are n to n + nga.

Therefore, we define a value p; (p for product state) that
measures the complementary tableau distance of the cur-
rent error-free canonical tableau with the target tableau
according to the above criteria. For an illustration of the
reward calculation, see Appendix D.

We again use the reward shaping technique, which
gives the reward function,

re = pup(fe — fio1) + palde—1 — di) + pp(pe — pe—1), (4)

where p defines the weight for each individual reward.
A trajectory stops when all of the harmful errors are
flagged, the prepared state is the logical state, and the
data qubits and flag qubits are a product state (success)
or the number of gates is greater than a threshold L
(failure).

B. Results

Let us take non-FT state preparation circuits from the
literature and use the RL method to synthesize the ver-
ification circuits. We then compare them with known
verification circuits.

We use three metrics to compare different verification
circuits. (i) First, we compare the number of two-qubit
gates (one-qubit gates do not propagate errors) and the
number of flag qubits. (ii) The second metric is the ac-
ceptance rate. A state outcome is accepted if, after run-
ning the circuit with noise, the flag qubits are not trig-
gered. To determine the acceptance rate numerically,
we simulate 107 noisy circuit trajectories for each vary-
ing error probability p by adding circuit-level noise using
the STiM [121] library and count the number of accepted
state outcomes. (iii) The final metric is the logical error
rate pr,. When a state outcome is accepted, we perform a
perfect round of error correction on the data qubits. We
can then check if the decoded state is correct, otherwise,
a logical error has occurred. As discussed in Sec. I1C,
pr, of a fault-tolerant circuit should scale proportional to
p? for distance-3 codes, while it scales as p for non-fault-
tolerant circuits.

In our numerical experiments, we choose to use the
standard gate set (H, S, and CNOT) combined with the
CZ gate. The training of the agent starts with one flag
qubit, and if the training does not converge, the number
of flag qubits is incremented by one until a solution is
found. We have also found empirically that prohibiting
the agent from applying gates between the data qubits
helps to speed up training convergence. In Appendix K,
we show how different values of the weights p in the re-
ward affect the acceptance and logical error rates.

First, we synthesize the verification circuit for CSS
codes. As discussed in Sec. IIC, CSS codes have the
favorable property that some errors are tolerable. We
illustrate this by synthesizing the verification circuit for
the |0) preparation of the [[7,1,3]] Steane code with
Zy, = Z®7. The circuit was proposed in [32] (part of the
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FIG. 6. Results for the verification circuit synthesis task. Ex-
amples of RL-discovered verification circuits (shaded in blue)
for a given non-fault tolerant (FT) preparation (shaded in
green) of (a) the |0)1 state of the [[7, 1, 3]] Steane code from
Ref. [32] and (b) the |—) state of the [[5,1,3]] perfect code
from Ref. [29]. In Ref. [32], the verification circuit uses 1 flag
qubit and 3 two-qubit gates, which is the same as the circuit
discovered by the RL agent. In Ref. [29], the verification cir-
cuit uses 6 flag qubits (or 2 flag qubits with 2 qubit resets)
and 15 two-qubit gates, while the RL-discovered circuit in (b)
uses only 2 flag qubits and 7 two-qubit gates. Comparison of
the acceptance rate (c) and logical error rate (d) with differ-
ent simulated error probability p for the circuits shown in (a)
and (b) compared to non-FT circuits and circuits in [32] and
[29].

circuit in Fig 6a shaded in green) and has been experi-
mentally realized in [3, 6, 37, 38]. The RL agent discovers
verification circuits with the same number of flag qubits
and two-qubit gates as the one in [32]. Part of the circuit
in Fig 6a, shaded in blue, shows an example of the verifi-
cation circuit discovered by the RL agent. We show other
discovered circuits in Appendix L. We observe that the
RL agent learns to measure the stabilizer-equivalent log-
ical Z operator I1Z1ZZ1 without being explicitly told.
Although the discovered circuit has the same number of
flag qubits and two-qubit gates, we see in Fig. 6(c),(d)
that the acceptance rate and the logical error rate of the
RL-discovered circuit are marginally better than the ver-
ification circuit proposed in [32].

We now move on to the synthesis of verification circuits
for non-CSS codes. We choose to synthesize the verifi-
cation circuit for the |—)z preparation of the [[5,1,3]]
perfect code with X;, = XXX X X proposed in [29] and
experimentally realized in [6, 7]. The blue-shaded part
of the circuit in Fig 6b shows an example of the verifi-
cation circuit discovered by RL. The RL agent learns to
measure the stabilizer I1Z X Z in the first ancilla and the
stabilizer XIXZZ in the second ancilla. In Fig. 6(c),
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we see that the RL-discovered circuit has a higher ac-
ceptance rate compared to the circuit in [29] due to the
smaller circuit size and fewer flag qubits. Nevertheless,
in Fig. 6(d), we see that the logical error rate is slightly
worse than the circuit in [29]. However, the RL agent also
discovers circuits with a lower logical error rate than the
circuit in [29], at the expense of requiring 3 flag qubits.
We show this circuit in Appendix L.

In this work, we consider only d = 3 codes. The dis-
covery of verification circuits for larger codes is challeng-
ing, but we could in principle extend our RL approach
to higher distance codes. We illustrate the discussion
with d = 5 codes. In this case, the logical error rate pr,
must be such that py;, ~ p3, so that errors from two gate
failures must be propagated. Therefore, we only need
to change the way the error is propagated when training
the RL agent. If L is the number of two-qubit gates,
we need to propagate O(L) errors for d = 3 and O(L?)
errors for d = 5. In addition, L is also generally higher
for d = 5 codes than for d = 3 codes. Our RL approach
can be further improved by restricting the action space
or by designing a better reward function, which we leave
for future work.

In summary, we have shown that the RL method can
be used to discover verification circuits for given non-FT
logical state preparation circuits. We even show a case
where the RL method discovers a better circuit than the
existing circuit in the literature. Furthermore, interest-
ingly the RL method can also discover variants of veri-
fication circuits with different tradeoffs in terms of logi-
cal error rates, acceptance rates, and the number of flag
qubits.

VI. INTEGRATED FAULT-TOLERANT
LOGICAL STATE PREPARATION

A. Task Description and Reward Function
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FIG. 7. The integrated fault-tolerant logical state prepara-
tion task outputs a circuit W that directly prepares |¢)1 of
a [[n, k, d]] code in a fault-tolerant way.

Individually, we have shown that RL methods are able
to achieve competitive results for the tasks of logical state
preparation and verification circuit synthesis. Here, we
go beyond the separation of the tasks and present our
main approach that integrates them to directly prepare
logical states in a fault-tolerant manner.



We expect that this integration will allow the RL agent
to devise a more effective strategy compared to separat-
ing the task for two main reasons. First, it will take
error propagation into account when preparing the log-
ical state. In addition, we expect the agent to perform
better when preparing a fault-tolerant logical state un-
der limited qubit connectivity. When we consider the
two goals separately, instead, the RL agent does not take
into account which data qubits are connected to the flag
qubits when preparing the logical state.

The goal is to find a circuit W that prepares a logi-
cal state in a fault-tolerant way (see Fig. 7). The task
requirement is the tableau of the target stabilizer state
Starget and the number of available flag qubits n4. Note
that, with respect to the previous two tasks, it is possi-
ble though not necessary that the circuit W found by the
RL agent is also decomposable into the state preparation
circuit U and the verification circuit V.

The reward used for this task is the same as in Eq. (4).
However, in this case, the RL agent starts from scratch,
so the set of error operators £ is initially empty and grows
as the agent performs actions by adding gates to the cir-
cuit construction attempt.

B. Results
1. All-to-all qubit connectivity

We first compare our two RL approaches to prepare a
logical state in a fault-tolerant manner on all-to-all qubit
connectivity. The first approach separates the task into
logical state preparation (LSP) followed by wverification
circuit synthesis (VCS), which we refer to as LSP+VCS.
The second one, instead, is our main approach that di-
rectly prepares the fault-tolerant logical state, which we
refer to as integrated fault-tolerant logical state prepara-
tion (IFT-LSP).

We will discuss the preparation of the following logical
states. For the CSS codes considered (i.e. the [[7,1, 3]]
Steane code, [[9,1,3]] Shor code, and [[15,1,3]] Reed-
Muller code), we prepare the |0), state with Z; = Z®"
and the |+); state with X, = X®". For the non-
CSS code (i.e. the [[5, 1, 3]] perfect code), we prepare the
|1}, state with Z;, = ZZZZZ and the |—)}, state with
X, = XXXXX. For this task, we also consider the
[[9,1,3]] Surface-17 code [17], which has been realized
experimentally, for example in [5, 8, 13].

In our numerical experiments, we again use the stan-
dard gate set combined with the CZ gate. The training of
the agent starts with one flag qubit, and if the training
does not converge, the number of flag qubits is incre-
mented by one until a solution is found.

We compare the minimum number of two-qubit gates
and the number of ancillas needed to prepare fault-
tolerant logical states with the two RL approaches
(LSP+VCS and IFT-LSP) and existing circuits in Ta-
ble I. IFT-LSP is better than LSP+VCS at preparing
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TABLE I. The comparison of fault-tolerant logical state
preparation circuits on all-to-all qubit connectivity between
our two RL approaches and existing circuits. We show the
minimum number of two-qubit gates and the number of flag
qubits in parentheses. Bold text indicates methods with the
lowest number of two-qubit gates. The first RL approach is
the LSP+VCS, where we separate the task by first perform-
ing the logical state preparation (LSP in Sec. IV) followed by
the verification circuit synthesis (VCS in Sec. V). The second
RL approach is our main approach, which is the integrated
fault-tolerant logical state preparation (IFT-LSP in Sec. VI).
We see that IFT-LSP always finds circuits with less or a sim-
ilar number of two-qubit gates than LSP+VCS or existing
circuits.

Code State LSP+VCS IFT-LSP Existing
[5,1,3]] 1)r 14 (2) 12 (2) -
perfect |—)r 12 (2) 12 (2) 20 (6) [29]
[[7,1,3]] [0)z 11 (1) 11 (1) 11 (1) [32]
Steane |+)r 11 (1) 11 (1) -

(9, 1,3]]  [0)r 6 (0) 6 (0) -

Shor |+)r 11 (1) 11 (1) -

19,1, 3] |0)L 11 (1) 11 (1) -2
Surface-17  |+)1 11 (1) 11 (1) -
[[15,1, 3]] |0)z 29 (2) 25 (1) 25 (1) [34]

Reed-Muller |+);, 31 (1) 31 (1) 32(1) [34]

aRef. [35] shows the FT preparation of |0), state of the [[9, 1, 3]]
surface-17 code with 8 two-qubit gates and 0 flag qubits.
However, the connectivity of qubits is different, namely a 3 x 3
grid without ancilla qubits. See also footnote [123].

two states: |1) of [[5,1,3]] perfect code and |0); of
[[15,1, 3]] Reed-Muller code. This is most likely because
the LSP does not take error propagation into account
when preparing the state. Compared to existing circuits
in the literature, our RL approaches find a smaller num-
ber of two-qubit gates in two states: |—)r of [[5,1,3]]
perfect code and |+); of [[15,1,3]] Reed-Muller code.
The first case is already shown in Fig. 6(b), while the
second case needs one two-qubit gate less than the ex-
isting one. The circuits are shown in Appendix M. In
terms of efficiency, both RL approaches are compara-
ble. For example, to prepare the |0)r of the [[7,1,3]]
Steane code, IFT-LSP needs about 150 seconds, while
LSP+VCS needs about 180 seconds on a single NVIDIA
Quadro RTX 6000 GPU.

Fig. 8(a) and (b) show an example circuit for the fault-
tolerant preparation of the |0); state of the [[7,1,3]]
Steane code and the |[1); state of the [[5,1,3]] per-
fect code discovered by IFT-LSP, respectively (see Ap-
pendix M for other examples of RL-discovered circuits).
We can see that to prepare the |0);, state of the [[7, 1, 3]]
Steane code, the RL agent measures the stabilizer-
equivalent logical Z operator I1ZZ117. When prepar-
ing the [1); state of the [[5,1,3]] perfect code, the
agent measures the stabilizer-equivalent logical Z oper-
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FIG. 8. Results for the RL-based integrated fault-tolerant logical state preparation (IFT-LSP). An example of a fault-tolerant
circuit prepared by an RL agent for (a) the |0) state of the [[7,1, 3]] Steane code and (b) the |1)1 state of the [[5, 1, 3]] perfect
code in all-to-all qubit connectivity. Parts (c¢) and (d) show learned fault-tolerant circuits for the same logical state preparation
task on a 2D grid connectivity based on Google Sycamore [122] (¢) and IBMQ Tokyo [116] (d) devices. In (e), we show, for the
first time, flag-based fault-tolerant |0)z state preparation of the [[9, 1, 3]] Surface-17 code on a 2D grid connectivity and qubit
placement taken from Refs. [5]. Note that the flag qubits (in blue) are measured, but for simplicity, the measurement is not
shown. Unused qubits or connections (in gray) mean that they are available for use by the RL agent, but are not used in the

solution found by the agent.

ator ZXI1XZ7 via the first ancilla and X XI1Z1I via the
second ancilla.

As a side note, one can prepare other states by chang-
ing the logical operators. Alternatively, we can also ap-
ply logical gates to a prepared state. For example, it
is known that the logical H gate in the [[7, 1, 3]] Steane
code is transversal (applying H to each physical qubit),
so it is still fault-tolerant. Thus, one can prepare |+, by
applying logical H to the prepared |0);. However, this
is not obvious for example in the [[5, 1, 3]] perfect code.
In Ref. [6], the authors always prepare the |—)p fault-
tolerantly first, and then rotate the logical basis state to
another state. With our RL approach, instead, we can
automatically discover fault-tolerant preparation circuits
for other states.

2. Restricted qubit connectivity

We now move to a more general and practically rel-
evant case where we show fault-tolerant logical state
preparation on a device with restricted qubit connectiv-
ity. There are some handcrafted recipes for specific codes,
such as encoding the |0), state of the [[9, 1, 3]] surface-17
code in a 1D array [35] and encoding a magic state of the
[[4,1,2]] code in an IBMQ device [124]. Here, we want to
use RL instead to automatically discover such circuits.

Note that transpiling a fault-tolerant circuit prepared
for all-to-all qubit connectivity generally does not work,
since it does not guarantee that the transpiled circuit
is fault-tolerant. Additionally, we find that separating

the task (LSP+VCS) fails in some cases. The first case
is when a data qubit is connected only to the ancillas.
In this scenario, one would have to use the ancilla as
a “bridge” to the corresponding data qubit. The second
case is when the VCS fails because the LSP does not take
the position of the ancilla into account when preparing
the logical state. In contrast, our main approach (IFT-
LSP) works in these conditions. We discuss these two
cases in more detail and give examples in Appendix N.

We illustrate our main approach by preparing fault-
tolerant logical states on a 2D grid, which is common
in quantum chips based on superconducting qubits (e.g.
Google Sycamore [122], IBM Quantum devices, Rigetti
Ankaa). We first demonstrate the fault-tolerant prepara-
tion of the |0) 1, for the [[7, 1, 3]] Steane code on a 3x 3 grid
based on the Google Sycamore device. Fig. 8(c) shows
an example of an RL-discovered circuit. Impressively,
the RL agent discovers a circuit with the same number
of two-qubit gates and flag qubits as in the all-to-all qubit
connectivity shown in Fig. 8(a). Fig. 8(d) shows an ex-
ample of the fault-tolerant preparation of the |1), for the
[[5,1,3]] perfect code on a 2D grid based on the IBMQ
Tokyo [116] device. Compared to the circuit on all-to-all
qubit connectivity, it has the same number of flag qubits
and requires only 4 additional two-qubit gates. The RL
approach also manages to discover circuits for the prepa-
ration of other logical states, including for the [[9, 1, 3]]
Shor code, which we show in Appendix P.

The logical state of a surface code is commonly pre-

pared fault-tolerantly by using repeated stabilizer mea-
surements [125, 126]. Here, we for the first time show RL-
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FIG. 9. Exploration of different qubit connectivity and place-
ment for the integrated fault-tolerant |0); state preparation
of the [[7, 1, 3]] Steane code. We show the number of two-qubit
gates in some of the RL-discovered circuits with (a) 2D grid
(based on the Google Sycamore device) and (b) heavy-hex
layout (based on the IBMQ Guadalupe [115] device). Unused
qubits and connectivities (in gray) mean that the qubits were
given to the RL agent to be used as flag qubits, but were not
used. Unavailable qubits and connectivities (in black) mean
that the qubits are not set as available to the RL agent.

discovered flag-based fault-tolerant logical state prepara-
tion of a surface code in the standard 2D grid connec-
tivity: We illustrate this by preparing the |0); of the
[[9,1, 3]] Surface-17 code with the connectivity and qubit
placement from [5] in Fig. 8(e). The repeated stabi-
lizer measurements preparation needs 8 syndrome qubits,
while RL-discovered circuit, although given 8 flag qubits
to use, only needs 4 flag qubits and uses 16 two qubit
gates. It is only 5 two-qubit gates more than preparing
it in an all-to-all qubit connectivity as shown in Table I
(the circuit is shown in Appendix M) [123]. The discov-
ered circuit shows a novel approach to fault-tolerantly
prepare a logical Pauli state of the surface code.

In Appendix O, we compare the logical error and ac-
ceptance rates of the circuits shown in Fig. 8. In all cases
the logical error rate scales as p?, confirming that the cir-
cuits are fault-tolerant, as desired. In Appendix Q, we
show how different values of the weight p in the reward
affect the acceptance and logical error rates.

We now show that the RL approach allows a straight-
forward exploration of different qubit connectivity and
placements, i.e., assignments of data and flag qubits to
physical qubits of the underlying device, by training dif-
ferent RL agents. We illustrate this by preparing the
|0) 1, state for the [[7,1,3]] Steane code. On a 3 x 3 grid
based on the Google Sycamore device, there are ((‘;) =36
possible data and flag qubit placements. We train on all
possible configurations and in Fig. 9(a), we show 5 qubit
placements where the circuit discovered by the RL agent
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FIG. 10. Evolution of the learned strategy during training.
We train an RL agent for the integrated fault-tolerant |0)r
state preparation of the [[7,1, 3]] Steane code, assuming all-
to-all qubit connectivity. The left part of the figure shows the
circuit prepared by the agent. The right part shows the prob-
ability of actions for each step. We group the actions into 3
main groups: applying Hadamard gates on some qubits (red),
applying CNOTSs between data qubits (green), and applying
CNOTs between data qubits and flag qubits (blue). The back-
ground color indicates the most probable group of actions at
that step. We can see the progression of the RL agent’s learn-
ing process, starting from applying mostly Hadamard gates
in the first few steps in (a), followed by learning how to pre-
pare the logical state in (b), and finally learning how to pre-
pare the state and flag the harmful errors after convergence
in (c). We hypothesize that the agent applies long sequences
of self-cancelling CNOTs in (a) and (b) because it has not yet
learned what to do in the later time steps. The agent then
chose a “safe” strategy by applying multiple CNOTs several
times, which does not change the reward.

has the lowest number of two-qubit gates. Next, we il-
lustrate the same preparation for heavy-hex connectivity
based on the IBMQ Guadalupe device. We show 3 data
and flag qubit placements where the circuit has the low-
est number of two-qubit gates in Fig. 9(b). We have also
tried different flag qubit placements, but sometimes the
agent does not find an encoding circuit, especially when
the flag qubit is not located in the crossing (i.e. the flag
qubit is connected to 3 data qubits). This may indicate
that the best flag qubit placement in the heavy-hex con-
nectivity is in the crossings. We provide the circuits in
Appendix P.

One might expect that when the RL agent directly pre-
pares a fault-tolerant logical state, it would try to detect
some harmful errors in the middle of the preparation.
This is indeed the case, for example, in the circuit shown
in Fig. 8(c). However, we observe that most of the discov-
ered circuits can be decomposed into a state preparation
circuit U, followed by a verification circuit V' (e.g., the
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FIG. 11. Transfer learning for integrated fault-tolerant log-

ical state preparation from an all-to-all qubit connectivity to
a 2D grid connectivity. Part (a) shows the average return and
(b) shows the circuit size during training for the fault-tolerant
|0y preparation of the [[7,1, 3]] Steane code with and with-
out transfer learning. The training without transfer learning
also converges, but requires more training. The central part
(c) shows that when we directly use the transferred agent
without training, the agent retains the knowledge of placing
Hadamard gates as shown previously in Fig. 10. This is in
contrast to the case without transfer learning shown in (d),
where the agent applies only a long sequence of self-cancelling
CNOTs. In this case, the agent has not learned anything, so
the probability of each gate is still uniform. The CNOT gate
between qubit 7 and 5 is just a random gate chosen by the
agent.

circuits shown in Fig. 8(a), (b), and (d)).

We can try to investigate the strategy that the RL
agent learns by looking at the circuits and the action
probabilities during the training. We illustrate this in
Fig. 10. We see that in the initial training steps, the agent
applies Hadamard gates to initialize some qubits in the
|+), which is a known strategy for CSS codes [83]. Next,
the agent learns to prepare the logical state circuit with-
out flagging harmful errors. Finally, the agent learns to
flag the harmful errors until the training converges. We
illustrate this strategy for the integrated fault-tolerant
preparation of the |0), state of the [[7,1, 3]] Steane code
on all-to-all qubit connectivity in Fig. 10.

Finally, we want to explore the possibility of transfer
learning in this task. Transfer learning is a powerful tech-
nique in machine learning that leverages knowledge or a
strategy gained from solving one problem to solve related
but different problems. However, transfer learning does
not always work effectively because it depends heavily on
the similarity of the problems [119].

We show a transfer learning technique where we reuse
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the agent that was trained to prepare a fault-tolerant
logical state in an all-to-all qubit connectivity scenario
to prepare the same state for the situation of restricted
connectivity. The transfer learning process is explained
in detail in Appendix J. We find that transfer learning
helps to make the training converge faster. Additionally,
we see that the transferred agent retains the strategy
from the previous training. We illustrate this by compar-
ing the integrated fault-tolerant preparation of the |0)r,
state of the [[7,1, 3]] Steane code on a 2D grid without
and with transfer learning from all-to-all qubit connec-
tivity in Fig. 11.

In summary, we have shown that the integrated fault-
tolerant logical state preparation (IFT-LSP) approach al-
ways finds circuits with better or similar performance,
both compared to circuits known in the literature as
well as compared to circuits found by separating the task
into the two subtasks (LSP4+VCS). We have also demon-
strated state-of-the-art RL-based fault-tolerant logical
state preparation for restricted qubit connectivity sce-
narios with different connectivity and qubit placements.
Furthermore, with transfer learning, we can reuse an RL
agent trained for all-to-all qubit connectivity to acceler-
ate the training for restricted qubit connectivity.

VII. CONCLUSIONS AND OUTLOOK

We have presented reinforcement learning (RL) ap-
proaches to discover quantum circuits for fault-tolerant
(FT) logical state preparation of QEC codes based on
flag qubit protocols. We have started with the non-FT
logical state preparation task and showed that RL pre-
pares the logical state with a smaller circuit size than
other methods for the all-to-all qubit connectivity sce-
narios. We have also highlighted that including the hard-
ware constraint directly in the training yields quantum
circuits with a smaller circuit size than transpiling a cir-
cuit for all-to-all qubit connectivity. We have then syn-
thesized verification circuits to perform FT logical state
preparation. We have demonstrated that RL can dis-
cover verification circuits that perform better than or
equal to existing circuits in the literature. We have
shown that the main approach that we advocate in this
work, where we integrate the subtasks into the challenge
of direct integrated fault-tolerant logical state prepara-
tion (IFT-LSP), performs even better than separating
the tasks. Furthermore, we have demonstrated RL-based
fault-tolerant logical state preparation under constrained
connectivity for different qubit connectivity and place-
ments. Finally, we have investigated and shown that
transfer learning can help speed up the training process
of the RL agent.

In this work, we have demonstrated the first steps in
using an RL approach for the automatic discovery of
quantum circuits for fault-tolerant protocols in quantum
error correction. Qur approach could naturally be ex-
tended and applied to different tasks, such as the dis-



covery of quantum circuits for fault-tolerant magic state
preparation [36, 69], syndrome measurement [127, 128],
logical gates, error correction cycles, and other quantum
error correction subroutines. On the one hand, exploring
these scenarios will not require a completely different ap-
proach, since verification-like circuits can be used to ren-
der the tasks fault-tolerant. However, such extensions
will require a careful design of the appropriate reward
function, set of actions, and observations to effectively
train the RL agent. It will also be interesting to ex-
plore several avenues for scalability: on the one hand,
this could include for instance devising modular formu-
lations of the FT compilation tasks, e.g., by including
more complex building blocks, such as sub-circuits for
specific tasks such as stabilizer readout, in the set of ac-
tions available to the RL agent. On the other hand, it
would be exciting to explore the potential of collaborative
multi-agent RL scenarios, which may allow one to apply
the techniques proposed in this work to larger-distance
and concatenated error correction codes.
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Appendix A: Tableau representation

Here, we give more details about the representation of
quantum circuits as tableaus. Note that in this work,
we omit the “destabilizer” generators in the tableau de-
scribed in [76], since they are not useful for the task at
hand.

A tableau can be represented as a n X (2n+1) matrix of
binary variables x;;, z;;,7; for ¢,j € {1,...,n}. Each row
i of the tableau [x;1, ... %in, Zi1, - - - , Zin, T3] Tepresents the
Pauli matrix of the generators or the logical operators,
where the z;;2;; bits determine the j-th Pauli matrix,
where 00, 01, 10, and 11 denote I, Z, X, and Y Pauli, re-
spectively, and r; denotes the phase (1 for negative phase
and 0 for positive phase). For instance, a binary vector
[10011]|00110]1] represents the Pauli —XI1ZY X.

For instance, the tableau for |0) 1, of the [[7, 1, 3]] Steane
code [71] is a matrix of binary numbers of size 7 x 15
that contains 7 — 1 = 6 stabilizer generators and 1 log-
ical operator Zj. Table II shows the generators of the
[[7,1,3]] Steane code. Eq. (A1) shows an example of the
tableau for |0); of the [[7,1,3]] Steane code when we
choose Z;, = +ZZ7Z7Z7Z7Z7. In this tableau, the first
row represents the logical operator Z; = +ZZZ77Z7Z 7,
the second row represents the first stabilizer operator
+ZIZIZ1Z, and so on.

00000001 11111110
0000000(101010T1j0
1010101{0000000O0]|0
0000000(011001T1j0 (A1)
0110011/0000000/0
0000000({0O0OO0O1T11T1]0
0001111/0000000/0

As discussed in the main text, reordering the rows of
the tableau represents the same state. However, this
is not the case for the canonical tableau [76], which
is a unique representation of a tableau that represents
the same state. We can apply Gaussian elimination to
the matrix in Eq. (A1) and get the canonical tableau
in Eq. (A2). The Pauli string for this tableau is:
+XIXIXIX, +ZII11Z7, +IXXIIXX, +1Z11Z17Z,
+IIZIZZI, +11IXXXX, and +I1IZZ7Z7. We can
reorder the rows or change a row by multiplying other
rows in Eq. (Al) and it will still give the same canonical
tableau.

1010101{0000000O0]|0
0000000(200001T1j0
0110011/0000000/0
0000000(010010T1]0 (A2)
0000000(0010110/0
0001111/0000000/0
0000000j00O01T11T1j0

We flatten this matrix into a vector and use it to com-
pute the distance metric and as an input to the neural
networks.
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Appendix B: Hyperparameters and details of the
training

We use the multilayer perceptron architecture for the
critic and actor networks to train the PPO algorithm [94].
Both of the networks have two hidden layers with the
ReLU activation function. The number of hidden nodes
is set to 128. However, in cases where the number of
physical qubits is more than 10 with all-to-all qubit con-
nectivity, we increase the number of hidden nodes to 256.
The weight matrices are initialized with a uniformly dis-
tributed orthogonal matrix with 0.01 scale, while the bi-
ases are initialized to zero.

The hyperparameters of the PPO training are as fol-
lows [94]. We use the Adam optimizer with a learning
rate of 0.001 with an annealing learning rate. We train
10 agents in parallel. Each agent sees batches of 16 en-
vironments. We train the agent for a total of one million
time steps with an entropy coefficient of 0.05. The net-
work is updated after every 4 epochs and the number of
minibatches is set to 4. The discount factor (v) is set
to 0.99, the generalized advantage estimate (GAE) value
(M) is set to 0.95, the clipping parameter (e) is set to 0.2,
the value function coefficient is set to 0.5, and the max-
imum gradient norm clip value is set to 0.5. For harder
cases (e.g. larger physical qubits or restricted connectiv-
ity), we increase the total time steps to 10 or 30 million
and change the learning rate to 0.0005 and the entropy
coefficient to 0.1. All experimental results shown in this
paper are done on NVIDIA Quadro RTX 6000 GPU. The
training is done with the same seed value to ensure the
same randomness.

For all experiments, we set the stopping threshold
€ = 0.9999 and the maximum steps in the trajectory
L = 50 and in harder cases to L = 100. For the reward
of verification circuit synthesis in Eq.( 4), we set us = n,
ta = |n/2], and u, = 1. For the reward of fault-tolerant
logical state preparation also defined in Eq.( 4), we set
ta =mn, py = |n/2], and p, = 1. These values are de-
termined from our numerical experiments by varying the
weight, which we discuss in Appendix K and Appendix Q.

Appendix C: Comparison of distance functions

We propose to use the complementary distance 1 — d;
between the target canonical tableau (Giarget) and the
canonical tableau of the current circuit at time ¢ (Gy) as
a reward to the RL agent. We first convert the current
and target canonical tableau matrices into binary vectors
and compute the distance. In principle, we can take any
binary distance measure. A natural choice of metric is
the Hamming distance, which fits the current application
since it is mostly used in coding theory. However, our
empirical experiments showed that the Jaccard distance
works better than the Hamming distance.

Let C11 be the number of elements in Giarger and Gy
that have a value 1 at the same position, Cyg the number
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of elements in Giarger and Gy that have a value of 0 at
the same position, Cy; the number of elements that have
a value of 0 in Giarget and 1 in G¢ at the same position,
and C1g the number of elements that have a value 1 in
Giarger and 0 in G at the same position.

The Hamming distance dg is defined as follows

Co1 + C1o

dy = ) C1
H'™ Coo + Co1 + Cro + C11 (©1)
while the Jaccard distance [129] d; is defined as
C C
d oLt C1o (C2)

" Co1+Cro+Cr1

We compare the RL training for preparing the |0)r,
state of the [[7,1,3]] Steane code using Hamming and
Jaccard distance. In Fig. 12, we see that results based on
using the Jaccard distance converge faster and more sta-
bly than those obtained by using the Hamming distance.
As seen in Eq. (C2), the computation of the Jaccard dis-
tance does not take into account the Cpyg. In stabilizer
language, this means that we do not take into account
when the Pauli identity I matches in both target and cur-
rent tableau. This also means that the Jaccard distance
penalizes more dissimilarities compared to the Hamming
distance. We hypothesize that since we are using a re-
ward shaping technique, the increase in the inverse dis-
tance is larger when using the Jaccard distance, which is
better learned by the RL agent. We illustrate this in the
inset of Fig. 12, where we test an RL-prepared circuit
and compare how the value of inverse distance evolves
for each step of applying a gate. We see that the Jaccard
distance starts lower and increases more steeply than the
Hamming distance. Therefore, we use the Jaccard dis-
tance d; as the distance metric d; for our experiments.

Appendix D: Calculation of the complementary
tableau distance and product state

Here we show an example of distance and product state
calculations, as explained in Sec. V, which are part of
the reward function for verification circuit synthesis and
integrated fault-tolerant logical state preparation tasks.

As an example, consider the preparation of the state
|000) + |111) with two ancillas (n4 = 2). The state has
the following target canonical tableau: + XXX, +717,
and +1Z77. We need to append the last column of
the target canonical tableau with I®"4  so the target
canonical tableau for the data qubits is now: +X X X1,
+ZIZII, +1ZZII, as shown in Fig. 13(a). As men-
tioned in Sec. V, the stabilizer generators of the ancilla
must be of Z-type in the location of the ancilla and I in
the others for it to be a product state. Therefore, the
target canonical tableau of the ancilla qubits must be:
+I11ZI and +I111Z, as shown in Fig. 13(b).
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FIG. 12. Comparison of Hamming and Jaccard distance for

the reward function. Average circuit size of training an RL
agent to prepare the |0)r state of the [[7,1,3]] Steane code
using the Hamming and Jaccard distance for the complemen-
tary tableau distance reward 1 — d;. The color shade shows
the standard deviation over five different trainings. The inset
shows how the inverse distance value evolves for each step of
gate application for the circuit shown.
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FIG. 13. TIllustration of the complementary tableau distance
(d¢) and product state (p:) calculation. We want to prepare
the state |000) 4 |111) with two ancillas (n4 = 2). The target
canonical tableau can be separated according to the data (a)
and ancilla (b) qubits. (c) shows an example of a circuit
that almost prepares the target state, but the data qubits are
entangled with the ancilla. (d) shows an example of a circuit
that prepares the target state and is a product state of the
data qubits and the ancillas.

Fig. 13(c) and (d) show two circuit examples. To com-
pute the complementary tableau distance d;, we take
g1, 92, and g3 of the canonical tableau of the circuit and
compute the complementary tableau distance with the
target data canonical tableau. Since the ancilla qubits
are always placed last, we can extract the canonical
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tableau of the data qubits by taking the submatrix of
the canonical tableau from rows 1 to n. To compute
the product state p;, we first take g4 and g5 from the
canonical tableau of the circuit. We then compute the
d; between this subtableau and the target ancilla canon-
ical tableau. We can see that the circuit in Fig. 13(c)
is still far from the target state because the data qubits
are entangled with the ancilla, since both the d; and p;
are below 1. While the circuit in Fig. 13(d) correctly
prepares the state (d; = 1) and is a product state of the
data qubits and the ancillas (p; = 1).

Appendix E: Minimizing the number of gates in the
reward function

e =10
v 12.0 vy =099
R L =099 with -7
N ‘ v =0.95 R
=115
S5 e e e
-é = : YooIX V--oeTITX == M
O 11.0{77 TR YT i
1234567 8910
Agent

FIG. 14.  TIllustration of how the discount factor v affects
the circuit size. We train 10 different agents for preparing the
|0) . state of the [[7, 1, 3]] Steane code with v = {0.95,0.99,1}.
Additionally, we also tried to set « to 0.99 and add the A =
—1/50 (referred in the figure as v = 0.99 with —X) in the
reward function to penalize longer trajectories. The dashed
line shows the average circuit size.

One might notice that the reward function in the log-
ical state preparation task does not include a term that
minimizes the number of gates to make the prepara-
tion circuit compact. The most common technique is
to add an extra term —A\ at each time step to penalize
longer sequences, so that the reward function in Eq. 2 is
r¢ = dy_1 — dy — X\. The problem is that A is now a hy-
perparameter that must be tuned so that it does not be-
come stronger than the complementary tableau distance
reward.

However, without this term, one can also use the dis-
count factor 4 in the cumulative reward [48]. Instead
of maximizing 7 (0) = Eyr, [Y1—, ¢, we instead maxi-
mize J(0) = Eron, [ZtT:o v'r¢]. The v value ranges from
0 to 1. It determines how much future rewards are re-
duced in value compared to immediate rewards. When
~v = 1, the agent values future rewards as much as present
rewards, which can lead to longer trajectories. When
v < 1, the agent places more emphasis on the long-term
rewards and may take more steps initially to reach a state
that yields higher rewards in the long run, which can lead
to shorter trajectories.



We show this empirically in Fig. 14. We see that v =1
leads to a longer circuit than v < 1. Furthermore, adding
the —\ term to penalize longer sequences does not further
reduce the circuit size. For all experiments, we do not
include the —\ term and set v = 0.99.

Appendix F: List of stabilizer generators

TABLE II. Here we list the stabilizer generators for the
[[5, 1, 3]] perfect code [106], [[7,1, 3]] Steane code [71], [[9, 1, 3]]
Shor code [107], [[9,1,3]] Surface-17 code [17], [[15,1,3]]
quantum Reed-Muller code or 3D color code [112], and the
[[17,1,5]] 2D color code [74]. For the logical operators, we
choose Zr, to be Z®™ and X, as X®", where n is the number
of physical qubits of the respective code.

(5 1,3]  [[7,1,3]] (9,1, 3]] (9, 1,3]]
perfect Steane Shor Surface-17
IXZZX ZIZIZIZ ZZIIIIIII ZIIZIIIII
XZZXI XIXIXIX ZIZIIIIII IIIZZIZZI
ZZXIX IZZI1ZZ XXXXXXIII IZZIZZIII
ZXIXZ IXXIIXX ITIZZIIII ITITIZIIZ
IIIZZZZ ITIZIZIII IXXIIIIII
ITIXXXX XXXITIXXX XXIXXIIII
IIITIIZZI ITTITXXIXX
IIITIIIZIZ ITTITIIXXI

[[15, 1, 3]] Reed-Muller [[17,1,5]] 2D Color

ZI1ZIZIZIZIZIZIZ XXXXIIIIIITIIIIII
XIXIXIXIXIXIXIX ZZZZIIIIIIIIIIIII
1ZZ11727211727211727 XIXIXXIIIIIIIIIII
IXXIIXXIIXXIIXX ZIZIZZIIIIIIIIIII
I11Z7272721111727277 ITIIXXIIXXIIIIIII
ITIXXXXIIIIXXXX IITIZZIIZZIIIIIII
IIIIIIIZZZZ7Z7277Z ITITIITIXXIIXXIIIII
IIIIITIXXXXXXXX IITIIIZZIIZZIIIII
IIZIIIZIIIZIIIZ IITITITIXXIIXXIII
IITIZIZIIIIIZIZ IITITITIZZIIZZI1I1
IIIIIZZITIIIIIZZ ITITITITIITIXXIIXXI
IIIIIIIIIZZIIZZ IIIIITIIIIIZZIIZZI
IIIIIIIIIIIZZZZ IITIITIIXIIIXIIIXX
IIIIIIIIZIZIZIZ IITIIIIZIIIZIIIZZ

ITIXXIXXIIXXIIXXII

11Z2Z21727211ZZ11ZZ11

Appendix G: Logical state preparation circuits for
all-to-all qubit connectivity with standard gate sets

We show some examples of learned circuits for all-to-
all qubit connectivity with the standard gate sets. For
all circuits shown below, we choose Z; = Z®". These
circuits are also available online [103].

The |0)y, state of the [[5,1, 3]] perfect code. We
see that the prepared circuit has a pattern of two S gates
at the end of the circuit. This is because the RL agent
would first aim to get the correct stabilizer generators
without worrying about the sign and then apply Z gates
(which can be decomposed into two S gates) to fix the
sign.
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The |0)1, state of the [[7, 1, 3]] Steane code. We see
that the RL agent learns from scratch to prepare part of
the initial state of the physical qubits to |+) by applying
an H gate, similar to the strategy in [83]. We find that
we can exploit this observation by using the following
alternative strategy to speed up the training process. We
first select a random subset of physical qubits to |[+) and
then allow the agent to apply gates other than H.
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The |+)1, state of the [[9,1, 3]] Shor code.
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The |0)L, state of the [[15,1,3]] Reed-Muller or
distance-3 3D color code.
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Appendix H: Transfer learning for different logical
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Transfer learning results for different logical state

preparation tasks. We first train the agent to prepare the |0)1,
for the [[7,1,3]] Steane code with Z;, = Z®7 and then reuse
and retrain the agent to prepare |+)r with Xz = X®7 and
then successively | +14)z, with Yz, = —Y®7. (a) and (b) show
the average return and circuit size of training without and
with transfer learning to prepare |+)r. (¢) and (d) show the
same for the preparation of | + ). The shaded area shows
the standard deviation of training 10 different agents.

Here, we show an application of transfer learning where




we can reuse an RL agent trained on one logical state to
prepare another logical state with the same code. One
might argue that we can apply the logical H gate to
the |0), state to prepare the |+), state, and then apply
the logical S gate to prepare | + i), state. However, in
some codes, the logical H and S gates themselves are not
transversal.

We illustrate this by reusing the agent trained to pre-
pare the |0), state of the [[7, 1, 3]] Steane code to prepare
the states |[+) 1, and |+4), of the same code. In particular,
this transfer learning is called a one-to-one policy trans-
fer via policy reuse [120]. In this case, we can directly
reuse the networks of the RL agent since the number of
input and output nodes does not change.

We compare the preparation of the |+) 1 and the |+4) 1,
state of the [[7, 1, 3]] Steane code without and with trans-
fer learning in Fig. 15. Without transfer learning means
that the RL agent is trained from scratch to prepare the
states. On the other hand, with transfer learning means
that we first train the RL agent to prepare |0),, and then
retrain it to prepare |+) 1, and consecutively retrain it to
prepare |+ i)r.

Fig. 15(a) and 15(b) show the evolution of the average
return and the average circuit size evolution during train-
ing for the preparation of |+), with and without transfer
learning. Fig. 15(c) and (d) show the same but for the
preparation of | + ¢);. Here, we qualitatively compare
the performance based on the metrics used in [120] to
evaluate transfer learning for deep reinforcement learn-
ing. The first metric is the jumpstart performance, which
is the initial return value of the agent. We can see that
the average return of the RL agent with transfer learn-
ing is higher than without. The second metric is the
time to threshold, which is the learning time required for
the agent to reach a certain performance. We also see
qualitatively that the value of the average return with
transfer learning is almost always above without transfer
learning. Therefore, we have shown that the proposed
transfer learning technique is useful to efficiently prepare
different logical states.

Appendix I: Logical state preparation circuits for
IBM Quantum devices

We show here more circuit examples for logical state
preparation based on the IBM Quantum device connec-
tivity and gate set. The qubit placement is also given
according to the notation in the Qiskit library [118]. If
the qubit placement is given as a,b,c, ..., then it means
that qubit 0 (gp) in the circuit is placed in qubit a on the
device, qubit 1 (g1) is placed in qubit b on the device,
and so on. These circuits are also available online [103].

The |0)L, state of the [[5,1, 3]] perfect code on the

IBMQ Manila [113] connectivity. The qubit placement is
43,021,
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The |0)1, state of the [[7,1, 3]] Steane code on the
IBMQ Jakarta [114] connectivity. The qubit placement
is 5,6,4,3,0,1,2.
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The |+)L state of the [[9,1,3]] Shor code on the
IBMQ Guadalupe [115] connectivity. The qubit place-
ment is 5,3,8,7,6,4,0,1,2.
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The |0)1, state of the [[15, 1, 3]] Reed-Muller code
on the IBMQ Tokyo [116] connectivity. The qubit place-
ment is 5,17,2,9,10,13,1,11,7,16,4,3,8,6,12.
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Appendix J: Transfer learning to different
connectivity

We show a transfer learning technique that can reuse
and retrain the agent trained to prepare a logical state
for qubit connectivity G to prepare the same state with
different qubit connectivity G’. We assume that G’ is a
spanning subgraph (having the same number of qubits
but only some of the edges) of G.

Since we transfer to a connectivity that is a spanning
subgraph of the original connectivity, the possible action
space in the new connectivity is a subset of the possible
action space in the original connectivity. This is equiva-
lent to removing some of the output nodes in the actor
network that correspond to invalid actions in the new
connectivity. The input nodes, hidden nodes, and the
value network remain the same and can be transferred
directly. After the transfer, we use this network as the
initial network and fine tune it for the new connectivity.

We illustrate this by choosing a case where RL agents
trained for all-to-all qubit connectivity are transferred
to a more restricted connectivity. For example, the
sketch of the transfer learning technique from four qubits
with all-to-all qubit connectivity to a new connectiv-
ity where the connections between qubit 1 and 3 and
the connections between qubit 2 and 4 are removed
is shown in Fig. 16(a). Assuming that we are using
CNOT gates, we need to remove the output nodes of
the actor network corresponding to the following actions:
CNOT(1,3),CNOT(3,1),CNOT(2,4), and CNOT'(4,2),
and keep the others. We then fine-tune this network to
prepare the state for the new connectivity.

We compare the preparation of |0)r of the [[5,1,3]]
code on IBMQ Lima [130] connectivity and [[7,1,3]]
code on IBMQ Jakarta [114] connectivity without and

(a) Action probabilities

Action probabilities

State Representation State Representation

107 ©
s 0.8
=]
2
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& — 00000
F04 g
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FIG. 16. Results of transfer learning for logical state prepa-
ration on IBM quantum devices. We first train the agent
to prepare |0)z in a setting of all-to-all qubit connectivity,
and then reuse and retrain it to prepare the same |0)z under
a different, restricted qubit connectivity. (a) The sketch of
the transfer learning on the network trained on four qubits
with all-to-all qubit connectivity to square connectivity by
removing the output nodes corresponding to invalid actions.
(b) The training evolution of preparing |0)z of the [[5,1,3]]
perfect code with Z; = Z®5 on all-to-all qubit connectiv-
ity and transferring it to IBMQ Lima [130] connectivity and
without transfer. (c¢) The training evolution of preparing |0) 1,
of [[7,1,3]] Steane code with Z;, = Z®7 on all-to-all qubit
connectivity and transferring it to IBMQ Jakarta [114] con-
nectivity and without transfer.

with transfer learning. Without transfer learning means
that the networks are randomly initialized at the start,
while with transfer learning means that we reuse net-
works that were trained for all-to-all qubit connectivity.
Fig. 16(b) and (c) shows the average return during the
training of the [[5,1,3]] perfect code and the [[7,1,3]]
Steane code with and without transfer learning. We see
that with transfer learning, the average return initially
starts a little bit higher, and more importantly, converges
faster than without transfer learning. The agents with-
out transfer learning need much more training time for
convergence.

Appendix K: Varying the verification circuit
synthesis task reward weights

Here, we vary the weights for the flag reward uy,
the complementary distance reward 4, and the product
state reward p, of the reward function that is defined
in Eq. (4) for the verification circuit synthesis task. We
then evaluate how this affects the acceptance and logical
error rates.



Effectively, only the weight ratios matter, since scaling
the reward function generally does not affect the perfor-
mance of the reinforcement learning training. We vary
tp/pa and p,/pq and synthesize the verification circuit
at each point. We then compute the acceptance and log-
ical error rates and fit them with the exponential and
quadratic functions, respectively. We then compare the
average coefficients over 10 different circuits.

Acceptance Rate Fit (e ~“P) Logical Error Rate Fit (¢ p2)
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FIG. 17.  Varying the weights of the reward function for
verification circuit synthesis. We vary the py/pqa and pp/pa
ranging from 1 to 5 with an interval of 1. The heatmap shows
the average fitting coefficients for the acceptance ((a) and (c),
the higher the better) and the logical error rate ((b) and (d),
the lower the better). We evaluate for the verification circuit
synthesis from the non-FT |0)z of the [[7,1, 3]] Steane code
taken from [32] ((a) and (b)) and |—)r of the [[5, 1, 3]] perfect
code taken from [29] ((¢) and (d)).

In Fig. 17(a) and (b), we see that the best strategy for
the |0) 7, state of the [[7, 1, 3]] Steane code is to prioritize
the weight of the flag reward py. In contrast, one needs
to prioritize the weight of the product state reward p,
for | =) of the [[5, 1, 3]] perfect code, as can be seen in
Fig. 17(c) and (d).

Appendix L: Examples of RL-discovered circuits for
the verification circuit synthesis task

Here we show more examples of RL-discovered circuits
for the verification circuit synthesis task. We are partic-
ularly interested in showing the ability of RL to explore
and present variants of circuits that minimize the fit co-
efficients of the acceptance or logical error rate. These
circuits are also available online [103].

We first show the synthesis of the verification circuit for
the |0);, state of the [[7, 1, 3]] Steane code by taking the
non-FT logical state preparation circuit from Ref. [32].
First, we show that the RL method also rediscovers the
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same circuit used in Ref. [32] shown below, which mea-
sures the stabilizer Z logical operator ZII11ZZ:

G0 ———
¢ {H] |
gz : E :
g3 : E T
¢ : Ol
g5 — G
g : DD
ar - SOD

The circuit with the lowest fitting coeflicients of the
acceptance and logical error rate is the circuit shown in
Fig. 6(a), which measures the stabilizer Z logical opera-
tor IIZIZZI. The other circuits are just permutations
of the CNOT gates in the verification circuit.

We now show the synthesis of the verification circuit
for the |—) 1, state of the [[5, 1, 3]] perfect code, using the
non-FT logical state preparation circuit from Ref. [29].

The circuit with the lowest acceptance rate fitting coef-
ficients is the circuit shown in Fig. 6(b). Below we show
another circuit with two flag qubits and similar fitting
coefficients.

qo - EI l

R [N

q2 - ‘{ET‘ ‘ \Nw%

g3 1 H [eer

qi; % l ‘ VAR

0 — e
: 1 H |
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The circuit with the lowest fitting coeflicients of the
logical error rate is the circuit shown below. The circuit
needs 3 flag qubits. The acceptance and logical error rate
fitting coefficients are —14.1 and 12.1, respectively. One
of the interesting properties that the RL agent learned
is that it uses an extra flag qubit (second flag qubit)
to fault-tolerantly measure stabilizer logical X operators
11ZX Z following the protocol in Ref. [29] in the first flag
qubit and XIXZZ in the third flag qubit.

%)Z{EET l <
: o9
Z; : %-l .

[
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We show another circuit with three flag qubits and sim-
ilar fitting coefficients. The RL agent learned to measure
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the stabilizer operators I1Z X Z in the first flag qubit and

IXZZX in the third flag qubit. !
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Appendix M: Examples of RL-discovered : ENETa m
fault-tolerant logical state preparation circuits @ @ LT
shown in Table I UER ‘6% H S
qq S
Here, we show circuit examples from Table I with two qs @ HF
RL approaches: logical state preparation followed by ver- g6 @ H
ification circuit synthesis (LSP + VCS) and integrated
fault-tolerant logical state preparation (IFT-LSP). These The |0);, state of the [[7,1,3]] Steane code. The
circuits are also available online [103]. circuit found with the LSP 4+ VCS approach has 11 two-
The 1)1, state of the [[5,1,3]] perfect code. The  qubit gates and 1 flag qubit:
circuit obtained with the LSP + VCS approach has 14
two-qubit gates and 2 flag qubits: . \
. \ ¢ {H] P :
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The circuit learned with the IFT-LSP approach has 11
The circuit obtained using the IFT-LSP approach has two-qubit gates and 1 flag qubit, while using a smaller

a smaller number of only 12 two-qubit gates and 2 flag ~ number of single-qubit gates:

qubits:

do - @
P : {H] o & o : [H]
q & (Hf—®1—P @ — DD o
%2 —HH]| a3+ {H]
@ ¢ {H|—${H -+ {H[ - @ S0
Ga SPASH & —D—D
K [H] (H| g6 : o >
g6 * TH] H] qr - SZASPASS
The |—)1, state of the [[5,1, 3]] perfect code. The The |+)1, state of the [[7,1,3]] Steane code. The

circuit with the LSP + VCS approach has 12 two-qubit  circuit learned with the LSP + VCS approach has 11
gates and 2 flag qubits: two-qubit gates and 1 flag qubit:
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The circuit found with the IFT-LSP approach has 11
two-qubit gates and 1 flag qubit:
The circuit learned using the IFT-LSP approach has
again 11 two-qubit gates and 1 flag qubit:

9 —P $P
EalE P P % : {H] P
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g3 {H] < g2 0
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qs : @ Q4 : D
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qr D
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The |0)1, state of the [[9,1, 3]] Shor code. Both ap- qo : D—PPH

proaches discover the known fault-tolerant state prepa-
ration circuit that does not require any flag qubits at all,
shown below. The |0)1, state of the [[9,1,3]] Surface-17 code.

The circuit learned with the LSP + VCS approach has
11 two-qubit gates and 1 flag qubit:
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The |+)1 state of the [[9,1,3]] Shor code. The
circuit learned with the LSP + VCS approach has 11 The circuit learned using the IFT-LSP approach has
two-qubit gates and 1 flag qubit: again 11 two-qubit gates and 1 flag qubit:
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The |+)1, state of the [[9,1,3]] Surface-17 code.
The circuit learned with the LSP 4+ VCS approach has
11 two-qubit gates and 1 flag qubit:

qo *
qi
qz
qs :
qs :
qs :
g6 -
qr
qs :
qo :

I
{H] x
anVan il BV any
T | T
{ H w
yan |
A :
{ H —p
o |
A :
1
any yan | any
A A ‘ A
{ H x
|
[Hfe—s—e{H}

The circuit learned using the IFT-LSP approach has
11 two-qubit gates and 1 flag qubit:
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|0)1, state of the [[15,1,3]] Reed-Muller

code. The circuit found based on the LSP + VCS ap-
proach has 29 two-qubit gates and 2 flag qubits:
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In contrast, the circuit obtained with the IFT-LSP ap-
proach has 25 two-qubit gates (instead of 29) and only
requires 1 flag qubit (instead of 2), illustrating the supe-
rior performance of the IFT-LSP over the LSP + VCS
approach:
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The |+)1, state of the [[15,1,3]] Reed-Muller
code. The circuit found with the LSP + VCS approach
has 31 two-qubit gates and 1 flag qubit:
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The circuit found with the IFT-LSP approach requires
also 31 two-qubit gates and 1 flag qubit:
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Appendix N: Examples of when LSP+VCS fails
with restricted connectivity

Here, we discuss two cases where logical state prepa-
ration (LSP) followed by verification circuit synthesis
(VCS) to prepare a fault-tolerant logical state would fail
in restricted connectivity settings. Fig. 18(a) shows a
case where a data qubit (qubit 6 in Fig. 18(a)) is only
connected to the flag qubits, and the circuit on the right
is the output of the integrated fault-tolerant logical state
preparation (IFT-LSP) task. If we separate the task, the
logical state preparation task fails to prepare the state
in this case. Fig. 18(b) shows a case where if we sepa-
rate the task, then the verification circuit synthesis fails,
while the circuit on the right is the RL-prepared circuit
with the fault-tolerant logical state preparation task. If
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FIG. 18. Two cases where the LSP+VCS approach fails, but
the IFT-LSP approach succeeds with restricted connectivity.
We use the IFT-LSP approach to fault-tolerantly prepare the
|0) . state of the [[7, 1, 3]] Steane code on a 2D grid. (a) A case
where the data qubit is only connected to the flag qubits. (b)
A case where VCS does not find a verification circuit.

we separate the task, then the state preparation does
not know where the ancilla is. Therefore, the verification
circuit synthesis fails to flag all of the harmful errors.

Appendix O: Logical error and acceptance rate of
circuits found by integrated fault-tolerant logical
state preparation
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FIG. 19. Logical error rate and acceptance rate of circuits
found with integrated fault-tolerant logical state preparation.
We take the circuits shown in Fig. 8. The circuits for [[9, 1, 3]]
Surface-17 in all-to-all qubit connectivity is shown in Ap-
pendix M.

When using a restricted connectivity, we would ex-
pect a trade-off in the state acceptance and logical error



rate compared to using all-to-all qubit connectivity. In
Fig. 19(a) and (b), we quantify and compare these two
rates of circuits shown in Fig. 8. We see that the state
acceptance rate of the circuit to prepare the |0), state of
the [[7,1, 3]] Steane code on a 2D grid is only marginally
lower than the one for the circuits with all-to-all qubit
connectivity, but both are higher than the acceptance
rate of the verification circuit synthesis task in Fig. 6(c).
Similarly, the logical error rate is only marginally higher.
In the case of the |1), for the [[5, 1, 3]] perfect code, the
circuit with restricted connectivity requires 5 two-qubit
gates more than the circuit shown with full connectiv-
ity. Nevertheless, the logical error rate is larger only
by approximately 25%. Interestingly, for the |0); of the
[[9,1, 3]] Surface-17 code, the logical error rate is higher in
the 2D grid connectivity than in the all-to-all qubit con-
nectivity, but the acceptance rate is lower. We suggest
that this has to do with the number of flag qubits. In the
2D grid, we need 4 flag qubits, while we only need 1 flag
qubits in the all-to-all qubit connectivity case. We have
also observed similar phenomenon in Appendix L, where
using more flag qubits decrease the acceptance rate but
increase the logical error rate. The relationship between
the number of flag qubits, number of gates, acceptance,
and logical error rate of different circuits is an interesting
avenue for further study, but beyond the scope of this pa-
per. Nevertheless, in all cases the logical error rate scales
as p?, confirming that the circuits are fault-tolerant, as
desired.

Appendix P: Circuits for fault-tolerant logical state
preparation in restricted connectivity

Here, we show examples of fault-tolerant logical state
preparation circuits with restricted connectivity as shown
in Fig. 9. If the qubit placement is given as a,b,c, ...,
then it means that qubit 0 (o) in the circuit is placed in
qubit a on the device, qubit 1 (¢1) is placed in qubit b on
the device, and so on. These circuits are also available
online [103].

1. The |0); state of the [[7,1,3]] Steane code on 2D
grid connectivity (Google Sycamore)

For the qubit placement, we follow the row-major order
starting with 0 at the top left of the qubit and 9 at the
bottom right of the qubit. The last two qubits are always
given as ancilla qubits. The RL agent can decide whether
to use them or not.

The circuit for the first qubit placement shown in
Fig. 9(a) with 11 two-qubit gates is already shown in
Fig. 8(c).

The circuit for the second qubit placement shown in
Fig. 9(a) with 12 two-qubit gates. The qubit placement
is: 2,5,6,1,0,4,7,3,8.
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The circuit for the third qubit placement shown in
Fig. 9(a) with 13 two-qubit gates. The qubit placement
is: 2,5,8,1,0,4,3,7,6.
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The circuit for the fourth qubit placement shown in
Fig. 9(a) with 14 two-qubit gates. The qubit placement
is: 0,2,8,6,4,1,7,5,3.
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The circuit for the fifth qubit placement shown in
Fig. 9(a) with 14 two-qubit gates. The qubit placement
is: 2,5,0,4,3,6,7,1,8.
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2. The |+). state of the [[7,1,3]] Steane code on 2D
grid connectivity (Google Sycamore)

The qubit placement for the circuit below is:
4,3,8,2,7,0,5,1,6.
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The qubit placement for the circuit below is:
5,4,7,6,1,0,8,2,3.
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3. The |0). state of the [[7,1,3]] Steane code on
heavy-hex connectivity (IBMQ Guadalupe)

The circuit for the first qubit placements shown
in Fig. 9(b) has 22 two-qubit gates.  The qubit
placement in the IBMQ Guadalupe [115] device is:

32

3,0,6,12,4,2,10,1,7. The last two qubits are given as
ancilla qubits.
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The circuit for the second qubit placement shown
in Fig. 9(b) with 27 two-qubit gates. The qubit
placement in the IBMQ Guadalupe [115] device is:
9,5,15,11,10,14,13,8,12. The last two qubits are given
as ancilla qubits.
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The circuit for the third qubit placement shown
in Fig. 9(b) with 28 two-qubit gates.  The qubit
placement in the IBMQ Guadalupe [115] device is:
6,15,0,2,13,10,4,1,7,12. The last three qubits are
given as ancilla qubits.
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4. The |+). state of the [[9,1, 3]] Shor code on 2D
grid connectivity (Google Sycamore)

Here, we show the result for the fault-tolerant prepa-
ration of the |+), state for the [[9,1,3]] Shor code on a
4 x 3 grid. For the qubit placement, we follow the row-
major order starting with 0 at the top left of the qubit
and 11 at the bottom right of the qubit. The last three
qubits are always given as flag qubits. The RL agent can



decide whether to use them or not.
The qubit placement for the circuit below is:
1,0,2,5,3,8,6,9,11,4,7,10. One flag qubit is not used.

QO5@
q1 -
qe : 4
qg:@ 4
q4 :
qs :
ge -
q7
qs :
qo :
AT

Qi : SZR Sy

a
U

A\

U

o

Ay

anY

"

A D

U U
Fany
N>

Vb
N>

Fany
N>

a
U

D
N>
a
N>

The qubit placement for the circuit below is:
6,7,10,8,1,3,5,11,9,4,0,2. One flag qubit is not used. In
this case, one data qubit has the flag qubit as its neigh-
bor, so the agent needs to use the flag qubit as a bridge
to that data qubit.
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5. The |—); state of the [[5,1,3]] perfect code on
IBMQ Tokyo

The qubit placement for the circuit below on the IBMQ
Tokyo [116] connectivity: 6,1,7,5,11,2,10.
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the IBMQ Tokyo [116] connectivity: 2,7,1,12,13,6,8.
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Appendix Q: Varying integrated fault-tolerant
logical state preparation task weight rewards

Here, we vary the weights for the flag reward uy,
the complementary distance reward 4, and the product
state reward g, of the reward function that is defined
in Eq. (4) for the integrated fault-tolerant logical state
preparation task (IFT-LSP). We then evaluate how it
affects the acceptance and the logical error rates.

Effectively, only the weight ratios matter, since scal-
ing the reward function generally does not affect the
performance of the reinforcement learning training. We
vary the ratios p1f/p, and piq/p, and prepare the fault-
tolerant logical state at each point. We then compute the
acceptance and logical error rates, and fit them with ex-
ponential and quadratic functions, respectively. We then
compare the average coefficients over 10 different circuits.

In Fig. 20, we see that the best strategy for the inte-
grated fault-tolerant logical state preparation task is to
prioritize the weight of the complementary distance re-
ward pg. This is expected since the RL training starts
from scratch, so pg must be prioritized.
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FIG. 20.  Varying the weights of the reward function for
integrated fault-tolerant logical state preparation (IFT-LSP).
We vary pr/up and pa/pp ranging from 1 to 5 with an interval
of 1. The heatmap shows the average fitting coefficients for
the acceptance rate (in (a) and (c), the higher the better) and
the logical error rate (in (b) and (d), the lower the better). We
evaluate for integrated fault-tolerant logical state preparation
of the |0) state of the [[7, 1, 3]] Steane code (in (a) and (b))
and the |1); state of the [[5,1,3]] perfect code (in (c) and
(d)). The white color means that no agent has converged on
that parameter.
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